基于多目标进化算法和SWMM的LID设施空间布局优化研究OACSTPCD
Spatial layout optimization of LID facilities based on multi-objective evolutionary algorithm and SWMM
针对传统算法无法满足低影响开发(LID)设施空间布局优化模型求解的性能要求的问题,以重庆秀山海绵城市建设区为研究区,基于MATLAB软件的platEMO4.0 平台,对比分析了NSGA-Ⅱ、NSGA-Ⅲ、MOEAD、PICEA-g、MOEAPSL、CCMO与CAMOEA7 种多目标进化算法对LID设施空间布局优化问题的求解结果与性能评价指标,并提出最佳方案.结果表明:新算法大部分性能指标优于传统算法,其中CCMO算法的多样性与收敛性最佳,而MOEAPSL算法的求解速度最快,搜索能力最强,且最优解数量最多;采用CCMO和MOEAPSL算法可获得研究区不同降雨重现期下的Pareto近似前沿,即LID设施空间布局的最优解集;以径流削减为控制目标的最佳方案在降雨重现期为5~100 a时径流总量控制率为 67.23%~76.70%,洪峰流量削减率为 66.42%~77.86%,LID单位面积建设成本为203.90~245.23 元/m2.
In response to the problem that traditional algorithms cannot meet the performance requirements of low impact development(LID)facility spatial layout optimization models,taking the construction pilot of Xiushan sponge city in Chongqing as an example.The platEMO4.0 platform based on MATLAB software was used to compare and analyze the solution results and performance evaluation indicators of seven multi-objective evolutionary algorithms,including NSGA-Ⅱ,NSGA-Ⅲ,MOEAD,PICEA-g,MOEAPSL,CCMO,and CAMOEA,for the optimization problem of LID facility spatial layout,and the best solution was proposed.The results show that most performance indicators of new algorithms are better than traditional algorithms,with CCMO algorithm having the best diversity and convergence,while MOEAPSL algorithm has the fastest solving speed,strongest search ability,and the highest number of optimal solutions.The CCMO and MOEAPSL algorithms can be used to obtain the Pareto approximate frontier,which is the optimal solution set for the spatial layout of LID facilities,under different rainfall recurrence periods in the study area.The optimal plan with runoff reduction as the control objective has a total runoff control rate of 67.23%~76.70%,a peak flow reduction rate of 66.42%~77.86%,and a construction cost of 203.90~245.23 yuan/m2 for LID under a rainfall return period of 5~100 years.
程麒铭;尹超;陈垚;杨真梅;苏义鸿;刘非
重庆交通大学河海学院,重庆 400074江津区生态环境监测站,重庆 402260重庆交通大学河海学院,重庆 400074||重庆交通大学环境水利工程重庆市工程实验室,重庆 400074
水利科学
多目标进化算法SWMMLID设施空间布局platEMO4.0平台
multi-objective evolutionary algorithmSWMMLID facilityspatial layoutplatEMO4.0 platform
《水资源保护》 2024 (001)
108-116 / 9
重庆市技术创新与应用发展专项重点项目(CSTB2022TIAD-KPX0200);重庆市建设科技计划项目(城科字2020第5-7)
评论