| 注册
首页|期刊导航|通信学报|基于安全联邦蒸馏GAN的工业CPS协作入侵检测系统

基于安全联邦蒸馏GAN的工业CPS协作入侵检测系统

梁俊威 杨耿 马懋德 Muhammad Sadiq

通信学报2023,Vol.44Issue(12):230-244,15.
通信学报2023,Vol.44Issue(12):230-244,15.DOI:10.11959/j.issn.1000-436x.2023216

基于安全联邦蒸馏GAN的工业CPS协作入侵检测系统

Secure federated distillation GAN for CIDS in industrial CPS

梁俊威 1杨耿 1马懋德 2Muhammad Sadiq1

作者信息

  • 1. 深圳信息职业技术学院软件学院,广东 深圳 518172
  • 2. 南洋理工大学电子与电气工程学院,新加坡 639798
  • 折叠

摘要

Abstract

Aiming at the data island problem caused by the imperativeness of confidentiality of sensitive information,a secure and collaborative intrusion detection system(CIDS)for industrial cyber physical systems(CPS)was proposed,called PFD-GAN.Specifically,a novel semi-supervised intrusion detection model was firstly developed by improving external classifier-generative adversarial network(EC-GAN)with Wasserstein distance and label condition,to strengthen the classification performance through the use of synthetic data.Furthermore,local differential privacy(LDP)technology was incorporated into the training process of developed EC-GAN to prevent sensitive information leakage and ensure privacy and security in collaboration.Moreover,a decentralized federated distillation(DFD)-based collaboration was de-signed,allowing multiple industrial CPS to collectively build a comprehensive intrusion detection system(IDS)to recog-nize the threats under the entire cyber systems without sharing a uniform template model.Experimental evaluation and theory analysis demonstrate that the proposed PFD-GAN is secure from the threats of privacy leaking and highly effec-tive in detecting various types of attacks on industrial CPS.

关键词

入侵检测系统/信息物理系统/生成对抗网络/本地差分隐私/去中心化联邦蒸馏

Key words

intrusion detection system/cyber physical system/generative adversarial network/local differential privacy/decentralized federated distillation

分类

信息技术与安全科学

引用本文复制引用

梁俊威,杨耿,马懋德,Muhammad Sadiq..基于安全联邦蒸馏GAN的工业CPS协作入侵检测系统[J].通信学报,2023,44(12):230-244,15.

基金项目

广东省青年创新人才基金资助项目(No.2022KQNCX233) (No.2022KQNCX233)

公共大数据国家重点实验室基金资助项目(No.PBD2022-14) (No.PBD2022-14)

深圳市自然科学基金资助项目(No.20220820003203001)The Guangdong Provincial Research Platform and Project(No.2022KQNCX233),The Foundation of State Key Laboratory of Public Big Data(No.PBD2022-14),The Shenzhen Natural Science Foundation(No.20220820003203001) (No.20220820003203001)

通信学报

OA北大核心CSCDCSTPCD

1000-436X

访问量0
|
下载量0
段落导航相关论文