| 注册
首页|期刊导航|太原理工大学学报|基于改进Transformer的变电站复杂场景下电力设备分割

基于改进Transformer的变电站复杂场景下电力设备分割

李洋 朱春山 张建亮 高伟 薛泓林 马军伟 温志芳

太原理工大学学报2024,Vol.55Issue(1):57-65,9.
太原理工大学学报2024,Vol.55Issue(1):57-65,9.DOI:10.16355/j.tyut.1007-9432.20230218

基于改进Transformer的变电站复杂场景下电力设备分割

Electrical Equipment Segmentation in Complex Substation Scenarios Based on Improved Transformer

李洋 1朱春山 1张建亮 1高伟 1薛泓林 1马军伟 1温志芳1

作者信息

  • 1. 国网山西信通公司,太原 030021
  • 折叠

摘要

Abstract

[Purposes]Owing to the varietry of electrical equipment and the complex connec-tion between them in transformer station,there are many common problems includeng relatively limited location and picture contrast of equipment,insufficient target images and markers in prac-tical applications,and inaccurate electrical equipment image segmentation brought by the tradi-tional way.In this paper,CNN(Convolutional Neural Network)is combined with Transformer to form a new model for segmentation of electrical equipment,and a new SE-Transfomer(Sub-station Equipment Transformer)network based on codec structure is proposed.[Methods]To obtain the local context information,the coder extracts the spatial feature map by using CNN at first.Meanwhile,the feature map is carefully modified with multi-scale feature inputs for global feature modeling.The decoder extracts global deep features using Transformer and performs stepwise up-sampling to predict the detailed segmentation map.SE-Transfomer is extensively ex-perimented on the dataset of Liangjiazhuang Transformer Station in Shanxi province,and its lon-gitudinal results of Dice,Recall,Specificity,and RMSE(Root Mean Square Error)are 89.31%,90.52%,89.62%,and 11.32,respectively.[Findings]The results indicate that SE-Transfomer obtains comparable or higher results than previous state-of-the-art segmentation methods on the scanning of electrical equipment in the transformer station.

关键词

Transformer/CNN/图像分割/电力设备/变电站

Key words

transformer/CNN/image segmentation/electrical equipment/substation

分类

计算机与自动化

引用本文复制引用

李洋,朱春山,张建亮,高伟,薛泓林,马军伟,温志芳..基于改进Transformer的变电站复杂场景下电力设备分割[J].太原理工大学学报,2024,55(1):57-65,9.

基金项目

国网山西省电力公司科技项目资助(52051C220003) (52051C220003)

太原理工大学学报

OACSTPCD

1007-9432

访问量0
|
下载量0
段落导航相关论文