Cu(111)衬底上单层铁电GeS薄膜的原子和电子结构研究OACSTPCD
Atomic and electronic structure of monolayer ferroelectric GeS on Cu(111)
二维铁电材料因具有自发极化特性,在铁电场效应晶体管、非易失性存储器和传感器中具有广泛的技术和器件应用.特别是第Ⅳ主族单硫属化合物具有最高的理论预测热电特性和本征的面内铁电极化特性,适合作为探索二维铁电极化特性的模型材料.然而,由于相对大的解理能,目前不容易获得高质量和大尺寸单层第Ⅳ主族单硫属化合物,严重阻碍了这些材料应用到快速发展的二维材料及其异质结研究中.本文采用分子束外延方法在Cu(111)衬底上成功制备单层GeS.通过高分辨扫描隧道显微镜,原位X射线光电子能谱和角分辨光电子能谱以及密度泛函理论计算,对单层GeS原子晶格和电子能带结构进行了系统表征.研究结果表明:单层GeS具有正交晶格结构和近似平带的电子能带结构.单层GeS的成功制备和表征使得制备高质量和大尺寸单层第Ⅳ主族单硫属化合物成为可能,有利于该主族材料应用到快速发展的二维铁电材料以及异质结研究中.
Two-dimensional(2D)ferroelectric materials are important materials for both fundamental properties and potential applications.Especially,group Ⅳ monochalcogenide possesses highest thermoelectric performance and intrinsic ferroelectric polarization properties and can sever as a model to explore ferroelectric polarization properties.However,due to the relatively large exfoliation energy,the creation of high-quality and large-size monolayer group Ⅳ monochalcogenide is not so easy,which seriously hinders the integration of these materials into the fast-developing field of 2D materials and their heterostructures.Herein,monolayer GeS is successfully fabricated on Cu(111)substrate by molecular beam epitaxy method,and the lattice structure and the electronic band structure of monolayer GeS are systematically characterized by high-resolution scanning tunneling microscopy,low-energy electron diffraction,in-situ X-ray photoelectron spectroscopy,Raman spectra,and angle-resolved photoelectron spectroscopy,and density functional theory calculations.All atomically resolved STM images reveal that the obtained monolayer GeS has an orthogonal lattice structure,which consists with theoretical prediction.Meanwhile,the distinct moiré pattern formed between monolayer GeS and Cu(111)substrate also confirms the orthogonal lattice structure.In order to examine the chemical composition and valence state of as-prepared monolayer GeS,in-situ XPS is utilized without being exposed to air.The measured spectra of XPS core levels suggest that the valence states of Ge and S elements are identified to be +2 and-2,respectively and the atomic ratio of Ge/S is 1∶1.5,which is extremely close to the stoichiometric ratio of 1∶1 for GeS.To further corroborate the quality and lattice structure of the monolayer GeS film,ex-situ Raman measurements are also performed for monolayer GeS on highly oriented pyrolytic graphene(HOPG)and multilayer graphene substrate.Three well-defined typical characteristic Raman peaks of GeS are observed.Finally,in-situ ARPES measurement are conducted to determine the electronic band structure of monolayer GeS on Cu(111).The results demonstrate that the monolayer GeS has a nearly flat band electronic band structure,consistent with our density functional theory calculation.The realization and investigation of the monolayer GeS extend the scope of 2D ferroelectric materials and make it possible to prepare high quality and large size monolayer group Ⅳ monochalcogenides,which is beneficial to the application of this main group material to the rapidly developing 2D ferroelectric materials and heterojunction research.
朱孟龙;杨俊;董玉兰;周源;邵岩;侯海良;陈智慧;何军
湖南工商大学微电子与物理学院,长沙 410205||中南大学物理与电子学院,纳米光子学与器件湖南省重点实验室,长沙 410083湖南工商大学微电子与物理学院,长沙 410205北京理工大学集成电路与电子学院,工信部低维量子结构与器件重点实验室,北京 100081中南大学物理与电子学院,纳米光子学与器件湖南省重点实验室,长沙 410083
二维铁电过渡金属单硫属化合物硫化锗扫描隧道显微镜X射线光电子能谱
2D ferroelectricstransition metal monochalcogenidesgermanium sulfidescanning tunneling microscopyX-ray photoemission spectroscopy
《物理学报》 2024 (001)
35-42 / 8
湖南省教育厅青年项目(批准号:22B0658)、湖南省自然科学基金(批准号:2023JJ30199,2021JJ40704)和国家自然科学基金(批准号:12004440,62275275)资助的课题.Project supported by the Research Foundation of Education Bureau of Hunan Province,China(Grant No.22B0658),the Natural Science Foundation of Hunan Province,China(Grant Nos.2023JJ30199,2021JJ40704),and the National Natural Science Foundation of China(Grant Nos.12004440,62275275).
评论