基于半导体量子阱中四波混频效应的高效光学非互易OACSTPCD
Efficient optical nonreciprocity based on four-wave mixing effect in semiconductor quantum well
基于半导体量子阱纳米结构中的四波混频效应,提出了一种无磁光学非互易的理论方案.利用实验可得的合适参数,实现了具有高传输率的非互易传输和非互易相移.此外,将这种半导体量子阱纳米结构嵌入马赫-曾德尔干涉仪,选择适当的参数,可以实现隔离比为 92.39 dB、插入损耗为 0.25 dB的双端口光隔离器,以及保真度为 0.9993、光子存活率为 0.9518、低插入损耗的四端口光环行器.半导体介质具有更容易集成和参数可调的优势,此方案可以为基于半导体固态介质的非互易性和非互易光子器件的实现提供理论指导.
Optical nonreciprocity has been a popular research topic in recent years.Semiconductor quantum wells(SQWs)play a key role in many high-performance optoelectronic devices.In this paper,we propose a theoretical scheme to achieve nonmagnetic optical nonreciprocity based on the four-wave mixing effect in SQW nanostructures.Using the experimentally available parameters,the nonreciprocal behavior of the probe field in forward direction and backward direction is achieved through this SQW,where both nonreciprocal transmission and nonreciprocal phase shift have high transmission rates.Furthermore,by embedding this SQW nanostructure into a Mach-Zender interferometer,a reconfigurable nonreciprocal device based on high transmission nonreciprocal phase shift that can be used as an isolator or a circulator,is designed and analyzed.The device can be realized as a two-port optical isolator with an isolation ratio of 92.39 dB and an insertion loss of 0.25 dB,and as a four-port optical circulator with a fidelity of 0.9993,a photon survival probability of 0.9518 and a low insertion loss with suitable parameters.Semiconductor media have the advantages of easier integration and tunable parameters,and this scheme can provide theoretical guidance for implementing nonreciprocal and nonreciprocal photonic devices based on semiconductor solid-state media.
盖云冉;郑康;丁春玲;郝向英;金锐博
武汉工程大学,光学信息与模式识别湖北省重点实验室,武汉 430200
光学非互易半导体量子阱四波混频
optical nonreciprocitysemiconductor quantum wellfour-wave mixing
《物理学报》 2024 (001)
78-86 / 9
国家自然科学基金(批准号:12074299,11704290,11705131)资助的课题.Project supported by the National Natural Science Foundation of China(Grant Nos.12074299,11704290,11705131).
评论