| 注册
首页|期刊导航|浙江电力|面向电力缺陷场景的小样本图像生成方法

面向电力缺陷场景的小样本图像生成方法

何宇浩 宋云海 何森 周震震 孙萌 陈毅 闫云凤

浙江电力2024,Vol.43Issue(1):126-132,7.
浙江电力2024,Vol.43Issue(1):126-132,7.DOI:10.19585/j.zjdl.202401015

面向电力缺陷场景的小样本图像生成方法

A few-shot image generation method for power defect scenarios

何宇浩 1宋云海 1何森 1周震震 1孙萌 1陈毅 2闫云凤3

作者信息

  • 1. 南网超高压公司电力科研院,广州 510000
  • 2. 浙江大学 机械工程学院,杭州 310027
  • 3. 浙江大学 海南研究院,海南 三亚 572000||浙江大学 电气工程学院,杭州 310027
  • 折叠

摘要

Abstract

Due to the limited availability of power defect data,most current defect detection methods are unable to accurately detect power system anomalies.To overcome this challenge,a few-shot image generation method is em-ployed.Building upon the improved local-fusion generative adversarial network(LoFGAN),a context-aware few-shot image generator is designed to enhance the defect detection network's capability to extract detailed features.A regularization loss based on LC-divergence is introduced to optimize the training effectiveness of the image genera-tion model on limited datasets.Experimental results reveal that the few-shot image generation method can generate effective and diverse defect data for power scenarios.The proposed model can address the issue of data unavailabil-ity in power defect scenarios.

关键词

小样本图像生成/电力缺陷/上下文信息/LC-散度

Key words

few-shot image generation/power defect/context-aware/LC-divergence

引用本文复制引用

何宇浩,宋云海,何森,周震震,孙萌,陈毅,闫云凤..面向电力缺陷场景的小样本图像生成方法[J].浙江电力,2024,43(1):126-132,7.

基金项目

浙江省科技计划项目(2022C01056) (2022C01056)

浙江省科技计划项目(LQ21F030017) (LQ21F030017)

CCF-联想蓝海科研基金 ()

浙江电力

OACSTPCD

1007-1881

访问量0
|
下载量0
段落导航相关论文