| 注册
首页|期刊导航|电测与仪表|基于改进粒子群算法优化LSTM的短期电力负荷预测

基于改进粒子群算法优化LSTM的短期电力负荷预测

崔星 李晋国 张照贝 李麟容

电测与仪表2024,Vol.61Issue(1):131-136,6.
电测与仪表2024,Vol.61Issue(1):131-136,6.DOI:10.19753/j.issn1001-1390.2024.01.020

基于改进粒子群算法优化LSTM的短期电力负荷预测

The short-term power load forecasting based on NIWPSO-LSTM neural network

崔星 1李晋国 1张照贝 1李麟容2

作者信息

  • 1. 上海电力大学计算机科学与技术学院,上海 201300
  • 2. 梅州市职业技术学校信息与电气工程学院,广东梅州 514017
  • 折叠

摘要

Abstract

Power load data has time-sequence and non-linear characteristics,and long short-term memory(LSTM)neural network can handle the above data characteristics.However,the performance of the LSTM algorithm has a great dependence on the preset parameters,and the parameters set by experience will make the model have low generalization performanceand reduce the prediction effect.In order to solve the above problems,this paper proposes a prediction model NIWPSO-LSTM combining the nonlinear dynamic inertia weight particle swarm optimization(NIWPSO)and long-short-time memory(LSTM)neural network.The nonlinear dynamic inertial weights are used to improve the global optimization ability of PSO,and then,the key parameters of LSTM are optimized through NIWPSO.The experimental results show that the prediction ac-curacy of NIWPSO-LSTM is much higher than other models,which verifies the feasibility of the proposed scheme.

关键词

短期电力负荷预测/机器学习/非线性动态调整惯性权重粒子群算法/LSTM

Key words

short-term power load forecasting/machine learning/NIWPSO/LSTM neural network

分类

信息技术与安全科学

引用本文复制引用

崔星,李晋国,张照贝,李麟容..基于改进粒子群算法优化LSTM的短期电力负荷预测[J].电测与仪表,2024,61(1):131-136,6.

基金项目

国家自然科学基金资助项目(61702321) (61702321)

国家自然科学基金资助项目(U1936213) (U1936213)

电测与仪表

OA北大核心CSTPCD

1001-1390

访问量0
|
下载量0
段落导航相关论文