模糊知识测度下图像脉冲噪声去除方法OACSCDCSTPCD
Removal of Impulse Noise in Grayscale Images Under Fuzzy Knowledge Measure
针对图像脉冲噪声去除方法中噪声检测不准确、滤波效果不理想等问题,本文引入知识测度新理论,提出一种基于模糊知识量的图像去噪新方法.首先改进并简化模糊知识测度公理系统,据此提出一种新的模糊知识测度参数化模型;其次,利用所提模型计算分析噪声图中极值点与邻域像素的相似性特征及知识量差异,有效识别并区分脉冲噪声与普通极值像素;最后,提出最大平均关联知识量滤波算法实现图像去噪.对比实验针对标准数据集与测试图分别进行.实验结果表明,所提方法能够准确识别脉冲噪声,切实提高图像滤波质量,去噪结果主要指标及性能明显优于同类其他算法,较本文对比方法平均值,指标PSNR平均提升7.8%,SSIM平均提升10%.本文将知识测度新理论应用于图像去噪中并取得优良效果,为该理论在其他相关领域的创新应用开创了新例.
Aiming at the problems of inaccurate noise detection and unsatisfactory filtering effect in image impulse noise removal methods,this paper introduces a new theory of knowledge measurement,and proposes a new method of image denoising based on fuzzy knowledge.Firstly,the fuzzy knowledge measurement axiom system is improved and simplified,and a new fuzzy knowledge measurement parameterized model is proposed based on this.Secondly,the proposed model is used to calculate and analyze the similarity characteristics and the differences in the amount of knowledge between extreme points and neighboring pixels in the noise image,and effectively identify and distinguish impulse noise from ordinary extreme pixels.Finally,a maximum average correlation knowledge filter algorithm is proposed to achieve image denoising.The com-parison experiments are carried out on the standard data set and the test image respectively,and the experimental results show that the proposed method can accurately identify the impulse noise,effectively improve the image filtering quality,and the main indicators and performance of the denoising results are significantly better than other similar algorithms.Compared with the average value of the comparison method,the index PSNR has an average increase of 7.8%,and the SSIM has an aver-age increase of 10%.This paper applies the new theory of knowledge measurement to image denoising for the first time and achieves excellent results,which creates a new example for the innovative application of this theory in other related fields.
郭凯红;崔明茜;刘婷婷
辽宁大学信息学院,辽宁沈阳 110036辽宁大学信息学院,辽宁沈阳 110036辽宁大学信息学院,辽宁沈阳 110036
计算机与自动化
知识测度模糊集图像滤波脉冲噪声检测自适应窗口
knowledge measurefuzzy setimage filteringimpulse noise detectionadaptive window
《电子学报》 2023 (11)
直觉模糊知识测度:公理、模型及应用
3248-3261,14
国家自然科学基金(No.71771110)辽宁省教育厅基本科研项目(No.LJKQZ2021023)辽宁省博士科研启动基金计划项目(No.2020-BS-082)National Natural Science Foundation of China(No.71771110)Basic Research Project of the Education Department of Liaoning Province(No.LJKQZ2021023)Ph.D.Research Startup Foundation of Liaoning Prov-ince(No.2020-BS-082)
评论