首页|期刊导航|电子学报|使用深度学习与海马体异构特征融合的阿尔茨海默病分类方法

使用深度学习与海马体异构特征融合的阿尔茨海默病分类方法OACSCDCSTPCD

Method on Alzheimer's Disease Classification Utilizing Deep Learning and Hippocampus Heterogeneous Feature Fusion

中文摘要英文摘要

阿尔茨海默病(Alzheimer's Disease,AD)是一种目前尚无有效方法治愈的神经系统退行性疾病,其准确分类有助于在AD早期阶段及时采取针对性治疗和干预措施,从而降低AD发病率和延缓AD疾病进展.本文提出一种使用深度学习和异构特征融合的AD分类新方法.针对大脑中的海马体结构,首先构建三维轻量级多分支注意力网络(Three-Dimensional Lightweight Multi-Branch Attention Net-work,3D-LMBAN)提取海马体深度特征;然后设计结合双树复小波变换(Dual-Tree Complex Wavelet Transform,DTCWT)和灰度游程矩阵(Gray-Level RunLength Matrix,GLRLM)的三维多尺度纹理特征提取方法提取海马体纹理特征;再使用传统方法提取海马体体积和形状特征;最后构建异构特征融合网络对提取得到的多种海马体特征进行降维表示、拼接和融合,进而实现AD分类.在EADC-ADNI数据集上进行实验,本文提出的AD分类方法的准确率(ACC)为93.39%,F1 分数为93.10%,AUC为93.21%.实验结果表明本文提出的AD分类方法是有效的,且其性能优于传统的AD分类方法.

Alzheimer's Disease(AD)is a neurodegenerative disease that is currently incurable.Its accurate classifi-cation is advantageous to timely treatment and intervention at the early stage of AD,so as to reduce the incidence rate of AD and delay its progress.In this paper,one novel AD classification method utilizing deep learning and heterogeneous fea-ture fusion is proposed.For the hippocampal structure in the brain,the three-dimensional lightweight multi-branch attention network(3D-LMBAN)is firstly constructed to extract the hippocampal depth features.Next,the three-dimensional multi-scale texture feature extraction method combining dual-tree complex wavelet transform(DTCWT)and gray-level run-length matrix(GLRLM)is proposed to extract hippocampal texture features.Then,the hippocampal volume and shape fea-tures are extracted by conventional methods.Finally,the dimension-reduction representation,concatenation and fusion of extracted various hippocampal features are performed using the constructed heterogeneous feature fusion network,and then AD classification is realized.The proposed AD classification method is evaluated on the EADC-ADNI dataset.The accura-cy(ACC),F1 score and AUC of proposed AD classification method are 93.39%,93.10%and 93.21%,respectively.The ex-perimental results show that the proposed AD classification method is effective and better than other conventional AD clas-sification methods.

蒲秀娟;刘浩伟;韩亮;任青;罗统军

重庆大学微电子与通信工程学院,重庆 400044||生物感知与智能信息处理重庆市重点实验室,重庆 400044重庆大学微电子与通信工程学院,重庆 400044重庆大学微电子与通信工程学院,重庆 400044||生物感知与智能信息处理重庆市重点实验室,重庆 400044重庆大学微电子与通信工程学院,重庆 400044重庆大学微电子与通信工程学院,重庆 400044

电子信息工程

阿尔茨海默病深度学习注意力机制纹理特征特征融合海马体

Alzheimer's Disease(AD)deep learningattention mechanismtexture featurefeature fusionhippo-campus

《电子学报》 2023 (11)

基于仿生原理与分形几何的高灵敏度电子鼻气味感知方法研究

3305-3319,15

国家自然科学基金(No.62171066)National Natural Science Foundation of China(No.62171066)

10.12263/DZXB.20221058

评论