基于MAP的多信息流梯度更新与聚合视频压缩感知重构算法OACSCDCSTPCD
MAP-Based Multi-Information Flow Gradient Update and Aggregation for Video Compressed Sensing Reconstruction
现有优秀的基于深度学习的分布式视频压缩感知(Distributed Compressed Video Sensing,DCVS)重构算法利用测量值和参考帧顺序更新非关键帧,获得了较好的重构性能,但由于缺乏较严格的理论指导,无法充分结合这两类信息,限制了非关键帧重构质量的进一步提升.针对该问题,本文首先利用贝叶斯理论及最大后验概率(Maxi-mum A Posteriori,MAP)估计推导出DCVS中非关键帧重构的优化方程,再基于近端梯度算法推导出优化方程的求解框架,包含多信息流梯度更新聚合方程.基于此,本文设计了多信息流梯度更新及聚合模块(Multi-Information flow Gradi-ent update and Aggregation,MIGA),并构建了深度多信息流梯度更新与聚合网络(Deep Multi-Information flow Gradient update and Aggregation Network,DMIGAN)用于DCVS非关键帧重构.MIGA利用测量值与多参考帧对当前非关键帧进行并行梯度更新,再做信息交互融合,从而充分结合多种信息流更新重构帧.本文级联MIGA与去噪子网络用于模拟近端梯度算法的单次迭代,作为基础模块(phase),并通过级联多个phase构造深度重构网络DMIGAN,实现帧重构的深度优化过程.实验表明,DMIGAN与具代表性的传统迭代优化算法结构相似的帧间组稀疏表示重构算法(Structural SIMilarity based Inter-Frame Group Sparse Representation,SSIM-Inter F-GSR)相比,在低采样率与高采样率下性能分别提升了8.8 dB和7.36 dB;和具有代表性的深度学习重构算法VCSNet-2相比,在低采样率和高采样率下性能分别提升了7.09 dB和8.78 dB.
Due to the lack of guidance from the parallel update theoretical solver framework,existing deep learning-based distributed compressed video sensing(DCVS)algorithms alternately use measurement values and reference frames to optimize the reconstructed non-key frame,resulting in the inability to fully combine the two types of information and limit-ing the quality of reconstruction.In order to solve this problem,this paper firstly uses Bayesian theory and maximum a pos-teriori estimation(MAP)to derive the optimization equation of non-key frame reconstruction in DCVS,and then derives the solution framework of the optimization equation based on the proximal gradient algorithm,including multi-information flow gradient update and aggregation equation.Based on it,this paper designs a multi-information flow gradient update and aggregation neural network module(MIGA),and constructs a deep multi-information flow gradient update and aggregation network(DMIGAN)for DCVS non-key frame reconstruction.MIGA uses the measurement values and multiple reference frames to update the current non-key frame by parallel gradients,and then performs information interaction and fusion,so as to fully combine multiple information flows to update and reconstruct the frame.In this paper,the MIGA and the denois-ing sub-network are cascaded to simulate a single iteration of the proximal gradient algorithm as the basic phase.The deep reconstruction network DMIGAN is constructed by cascading multiple phases to realize the deep optimization process of frame reconstruction.Experiments show that,compared with the representative traditional iterative optimization algorithm structural similarity based inter-frame group sparse representation(SSIM-InterF-GSR),the performance of DMIGAN is im-proved by 8.8 dB and 7.36 dB at low sampling rate and high sampling rate respectively;and compared with the representa-tive deep learning reconstruction algorithm VCSNet-2,the performance is improved by 7.09 dB and 8.78 dB at low sam-pling rate and high sampling rate,respectively.
杨鑫;杨春玲
华南理工大学电子与信息学院,广东广州 510640华南理工大学电子与信息学院,广东广州 510640
电子信息工程
分布式视频压缩感知最大后验概率估计多信息流梯度更新信息聚合迭代优化光流估计
distributed compressed video sensingmaximum a posteriori estimationmulti-information flow gradi-ent updateinformation aggregationiterative optimizationoptical flow estimation
《电子学报》 2023 (11)
3320-3330,11
广东省自然科学基金(No.2019A1515011949)Natural Science Foundation of Guangdong Province(No.2019A1515011949)
评论