| 注册
首页|期刊导航|地理空间信息|改进水循环优化BP神经网络的大坝变形预测

改进水循环优化BP神经网络的大坝变形预测

胡振东 郭明强

地理空间信息2024,Vol.22Issue(1):92-95,4.
地理空间信息2024,Vol.22Issue(1):92-95,4.DOI:10.3969/j.issn.1672-4623.2024.01.022

改进水循环优化BP神经网络的大坝变形预测

Dam Deformation Prediction Method Based on IWCA-BP Neural Network

胡振东 1郭明强2

作者信息

  • 1. 武汉智绘蓝图科技有限公司,湖北 武汉 434000
  • 2. 中国地质大学(武汉) 地理与信息工程学院,湖北 武汉 434000
  • 折叠

摘要

Abstract

The traditional dam deformation prediction method based on back propagation(BP)neural network has the problems of low predic-tion accuracy and poor noise robustness.We proposed an improved water cycle algorithm(IWCA)optimized BP neural network(IWCA-BP)model to realize high-precision prediction of building deformation trend.Firstly,we used empirical mode decomposition(EMD)to decompose high-dimensional complex deformation data into a series of intrinsic mode function(IMF)and the sum of residual terms.Then,we used the IWCA-BP neural network to model and predict each IMF separately.As a heuristic optimization algorithm,IWCA could quickly and accurately realize the global optimization of initial value of BP neural network,and improve the prediction performance.Finally,we used the actual defor-mation data of a concrete dam to carry out experiment.The results show that compared with Kalman filter,support vector machine,BP neural net-work and the latest particle swarm optimized random forest method,the proposed EMD-IWCA-BP method can achieve higher prediction accura-cy and noise robustness,and has a higher application prospect.

关键词

变形预测/BP神经网络/EMD/噪声稳健性/水循环算法

Key words

deformation prediction/BP neural network/EMD/noise robustness/water cycle algorithm

分类

天文与地球科学

引用本文复制引用

胡振东,郭明强..改进水循环优化BP神经网络的大坝变形预测[J].地理空间信息,2024,22(1):92-95,4.

基金项目

国家自然科学基金资助项目(41971356、41701446) (41971356、41701446)

自然资源部城市国土资源监测与仿真重点实验室开放基金资助项目(KF-2020-05-011). (KF-2020-05-011)

地理空间信息

OACSTPCD

1672-4623

访问量0
|
下载量0
段落导航相关论文