|国家科技期刊平台
首页|期刊导航|电力系统自动化|基于智能电表数据的低压配电网拓扑与线路参数联合辨识

基于智能电表数据的低压配电网拓扑与线路参数联合辨识OACSTPCD

Joint Identification of Topology and Line Parameters for Low-voltage Distribution Network Based on Smart Meter Data

中文摘要英文摘要

在低压配电网中,用户频繁地扩建和改接导致台账存在信息更新滞后、数据缺失等问题,难以获取当前运行状态下的拓扑及线路参数.针对无相角量测信息且含未知数量零注入功率"隐节点"的低压配电网,提出一种基于智能电表数据的低压配电网拓扑与线路参数联合辨识方法.基于低压配电网的电气特性以及辐射状网络的结构特点,推导出一种功率-电压比形式的线性逆潮流模型.通过线性回归求解得到阻抗距离矩阵,再利用无判定阈值形式的改进分组递归算法实现拓扑与线路参数的联合辨识.最后,在IEEE欧洲低压测试馈线和中国南京市某地区的实际低压配电网中对所提算法进行数值仿真,验证了所提算法的有效性.

In the low-voltage distribution network,frequent extensions and modifications by users lead to the issues such as delayed information updates and missing data in the account,making it difficult to obtain the topology and line parameters under the current operating conditions.For low-voltage distribution networks that lack phase angle measurement information and include an indeterminate number of"hidden nodes"with zero injection power,this paper presents a method for joint identification of the network topology and line parameters utilizing data from smart meters.Based on the electrical and structural characteristics of radial low-voltage distribution network,a linear inverse power flow model in the form of power-to-voltage ratio is derived.The impedance distance matrix is obtained by linear regression solution,and then the topology and line parameters are jointly identified using an improved recursive grouping algorithm without threshold setting.Finally,the effectiveness of the proposed algorithm is verified by arithmetic simulation in the IEEE European low-voltage test feeder and an actual low-voltage distribution network in Nanjing,China.

马尚;卫志农;黄蔓云;郑玉平;孙国强

河海大学能源与电气学院,江苏省南京市 211100南瑞集团有限公司(国网电力科学研究院有限公司),江苏省南京市 211106

低压配电网智能电表潮流拓扑辨识线路参数辨识

low-voltage distribution networksmart meterpower flowtopology identificationline parameter identification

《电力系统自动化》 2024 (002)

60-70 / 11

国家电网公司科技项目(新型电力系统配电网保护与自愈控制关键技术研究,5108-202218280A-2-75-XG). This work is supported by State Grid Coporation of China(No.5108-202218280A-2-75-XG).

10.7500/AEPS20230720002

评论