| 注册
首页|期刊导航|南方医科大学学报|多期相CT合成辅助的腹部多器官图像分割

多期相CT合成辅助的腹部多器官图像分割

黄品瑜 钟丽明 郑楷宜 陈泽立 肖若琳 全显跃 阳维

南方医科大学学报2024,Vol.44Issue(1):83-92,10.
南方医科大学学报2024,Vol.44Issue(1):83-92,10.DOI:10.12122/j.issn.1673-4254.2024.01.10

多期相CT合成辅助的腹部多器官图像分割

Multi-phase CT synthesis-assisted segmentation of abdominal organs

黄品瑜 1钟丽明 1郑楷宜 1陈泽立 1肖若琳 1全显跃 2阳维1

作者信息

  • 1. 南方医科大学生物医学工程学院//广东省医学图像处理重点实验室,广东 广州 510515
  • 2. 南方医科大学珠江医院影像诊断科,广东 广州 510282
  • 折叠

摘要

Abstract

Objective To propose a method for abdominal multi-organ segmentation assisted by multi-phase CT synthesis.Methods Multi-phase CT synthesis for synthesizing high-quality CT images was used to increase the information details for image segmentation.A transformer block was introduced to help to capture long-range semantic information in cooperation with perceptual loss to minimize the differences between the real image and synthesized image.Results The model was trained using multi-phase CT dataset of 526 total cases from Nanfang Hospital.The mean maximum absolute error(MAE)of the synthesized non-contrast CT,venous phase contrast-enhanced CT(CECT),and delay phase CECT images from arterial phase CECT was 19.192±3.381,20.140±2.676 and 22.538±2.874,respectively,which were better than those of images synthesized using other methods.Validation of the multi-phase CT synthesis-assisted abdominal multi-organ segmentation method showed an average dice coefficient of 0.847 for the internal validation set and 0.823 for the external validation set.Conclusion The propose method is capable of synthesizing high-quality multi-phase CT images to effectively reduce the errors in registration between different phase CT images and improve the performance for segmentation of 13 abdominal organs.

关键词

腹部多器官分割/多期相CT合成/对抗生成网络/Transformer

Key words

abdominal multi-organ segmentation/multi-phase CT synthesis/adversarial generative networks/Transformer

引用本文复制引用

黄品瑜,钟丽明,郑楷宜,陈泽立,肖若琳,全显跃,阳维..多期相CT合成辅助的腹部多器官图像分割[J].南方医科大学学报,2024,44(1):83-92,10.

基金项目

国家自然科学基金(82172020,62101239,82370674) (82172020,62101239,82370674)

广东省自然科学基金(2023A1515011291) Supported by National Natural Science Foundation of China(82172020,62101239,82370674). (2023A1515011291)

南方医科大学学报

OA北大核心CSTPCDMEDLINE

1673-4254

访问量0
|
下载量0
段落导航相关论文