车辆边缘计算中基于深度学习的任务判别卸载OACSTPCD
Deep Learning-Based Task Discrimination Offloading in Vehicular Edge Computing
车辆边缘计算(VEC)将移动边缘计算(MEC)与车联网(IoV)技术相结合,将车载任务下沉至网络边缘,以此解决车辆终端计算能力有限问题.为了克服任务数量骤增的车载任务调度难题并提供一个低时延服务环境,首先依据所选的 5大特征参数的动态关联变化准则,使用改进型层次分析法(AHP)将车载任务划分为 3类主要任务,基于 3种卸载决策进行资源分配联合建模;随后,利用调度算法和罚函数来消除建模的约束条件,所获的代价值为之后的深度学习算法提供输入;最后,提出一种基于深度学习的分布式卸载网络算法来有效降低VEC系统的能耗与时延.仿真实验结果表明,所提卸载方案相较传统深度学习卸载方案具有更好环境适应性与稳定性,并降低了任务平均处理时延与能耗.
Vehicle Edge Computing(VEC),combining mobile edge computing(MEC)with the Internet of Vehicles(IoV)technology,offloads vehicle tasks to the edge of the network to solve the problem of limited computing power at the vehicle terminal.In order to overcome the difficulty of on-board task scheduling due to the sudden increase in the number of tasks and provide a low-latency service environment,the vehicle tasks are divided into three types of main tasks by using improved Analytic Hierarchy Process(AHP)according to the dynamic correlation change criteria of the selected five feature parameters,and the joint modeling of resource allocation is carried out based on three kinds of offloading decisions.Then,the constraints of the modeling are eliminated by using scheduling algorithm and penalty function,and the obtained substitution value is taken as the input for the following deep learning algorithm.Finally,a distributed offloading network based on deep learning is proposed to effectively reduce the energy consumption and delay of VEC system.The simulation results show that the proposed offloading scheme is more stable than traditional deep learning offloading scheme and has better environmental adaptability with its less average task processing delay and energy consumption.
章坚武;戚可寒;章谦骅;孙玲芬
杭州电子科技大学信息工程学院,杭州 310018杭州电子科技大学通信工程学院,杭州 310018浙江大学信息与电子工程学院,杭州 311121普利茅斯大学,普利茅斯PL48AA
电子信息工程
深度学习边缘卸载多约束优化任务类型划分车辆边缘计算
deep learningedge offloadingmulti-constraint optimizationtask type divisionvehicular edge computing
《电子科技大学学报》 2024 (001)
29-39 / 11
国家自然科学基金国际合作交流项目(IEC\NSFC\181300);浙江省自然科学基金重点项目(LZ23F010001)
评论