| 注册
首页|期刊导航|电子科技大学学报|先验知识辅助的金属涂层损伤分割方法

先验知识辅助的金属涂层损伤分割方法

谢洲洋 舒畅 傅彦 周俊临 蒋家玮 陈端兵

电子科技大学学报2024,Vol.53Issue(1):76-83,8.
电子科技大学学报2024,Vol.53Issue(1):76-83,8.DOI:10.12178/1001-0548.2022373

先验知识辅助的金属涂层损伤分割方法

Knowledge-Driven Metal Coating Defect Segmentation

谢洲洋 1舒畅 2傅彦 3周俊临 3蒋家玮 1陈端兵3

作者信息

  • 1. 成都数之联科技有限公司,成都 610094
  • 2. 西南技术工程研究所,重庆 400039
  • 3. 成都数之联科技有限公司,成都 610094||电子科技大学大数据研究中心,成都 611731
  • 折叠

摘要

Abstract

Automatic recognition of metal coating defects has significant value in realistic applications.As deep learning makes breakthrough in surface defect segmentation for a variety of materials,most of deep convolutional neural network segmentation models are trained in an end-to-end manner.However,it is difficult to exploit prior knowledge about metal coating defects in end-to-end deep learning and adapt to the variable scale of the defects and the limited training data.This paper proposes a defect segmentation algorithm based on prior knowledge about metal coating defects to unify U-Net,a deep learning segmentation model for automatic metal coating defect recognition.This anomaly segmentation is based on Hue channel distribution and edge response.Being trained in a knowledge driven manner,the model can exclude outliers from training data and effectively avoid over-fitting.On a metal coating defect image dataset with four defect types,including crack,blister,rusting and flaking,the proposed method achieves 81.24% mIoU,which is advantageous over end-to-end deep learning.The experiment shows that knowledge-driven model can boost the performance of deep learning models in metal coating defect segmentation.

关键词

深度学习/损伤识别/图像分割/先验知识

Key words

deep learning/defect recognition/image segmentation/prior knowledge

分类

计算机与自动化

引用本文复制引用

谢洲洋,舒畅,傅彦,周俊临,蒋家玮,陈端兵..先验知识辅助的金属涂层损伤分割方法[J].电子科技大学学报,2024,53(1):76-83,8.

基金项目

国家自然科学基金(61673085) (61673085)

西南技术工程研究所合作基金(HDHDW5902010301) (HDHDW5902010301)

电子科技大学学报

OACSTPCD

1001-0548

访问量0
|
下载量0
段落导航相关论文