| 注册
首页|期刊导航|福建电脑|降低权重冗余的分类算法CFS-CFW研究

降低权重冗余的分类算法CFS-CFW研究

黄丽媛 何振峰

福建电脑2024,Vol.40Issue(1):9-15,7.
福建电脑2024,Vol.40Issue(1):9-15,7.DOI:10.16707/j.cnki.fjpc.2024.01.002

降低权重冗余的分类算法CFS-CFW研究

A Classification Algorithm CFS-CFW for Reducing Weight Redundancy

黄丽媛 1何振峰1

作者信息

  • 1. 福州大学计算机与大数据学院 福州 350108
  • 折叠

摘要

Abstract

Naive Bayes has a strong independence assumption,and feature weighting is the method to solve this problem.The CFW algorithm is a simple and effective weighting algorithm,but its weight calculation formula incorporates feature redundancy,which affects the weight assigned to each feature and reduces classification accuracy.In response to the weight redundancy problem in the CFW algorithm,this paper proposes the CFS-CFW algorithm.This algorithm uses the feature selection algorithm CFS to effectively reduce weight redundancy,allowing each feature to be assigned more appropriate weights.The experimental results on 13 UCI datasets show that the algorithm has higher classification accuracy.The accuracy of this algorithm is also higher on the spam classification dataset of UCI's spam database.

关键词

特征加权/特征选择/朴素贝叶斯

Key words

Feature Weighting/Feature Selection/Naive Bayes

分类

信息技术与安全科学

引用本文复制引用

黄丽媛,何振峰..降低权重冗余的分类算法CFS-CFW研究[J].福建电脑,2024,40(1):9-15,7.

基金项目

本文得到福建省自然科学基金(No.2022J01574)资助. (No.2022J01574)

福建电脑

1673-2782

访问量0
|
下载量0
段落导航相关论文