| 注册
首页|期刊导航|福建电脑|多尺度自相似遥感图像超分辨率重建网络设计

多尺度自相似遥感图像超分辨率重建网络设计

何松 唐程华 陈俊宽 谢唯嘉

福建电脑2024,Vol.40Issue(1):33-38,6.
福建电脑2024,Vol.40Issue(1):33-38,6.DOI:10.16707/j.cnki.fjpc.2024.01.006

多尺度自相似遥感图像超分辨率重建网络设计

Hybrid-scale Self-similarity Remote Sensing Image Super-resolution Reconstruction Network Design

何松 1唐程华 2陈俊宽 2谢唯嘉2

作者信息

  • 1. 赣州市大数据发展有限公司 江西 赣州 341000
  • 2. 江西理工大学信息工程学院 江西 赣州 341000
  • 折叠

摘要

Abstract

The area captured in remote sensing images is generally large,so targets with similar features have a higher probability of repeating themselves in the image.In response to this characteristic,this paper proposes a multi-scale self-similar remote sensing image super-resolution reconstruction network.By introducing a global context module in the SSEM network structure to obtain the internal recursion of single scale and cross scale information within the image,and introducing a pixel attention module in the upsampling module to enhance its feature detail extraction ability.Tests on the UC Merced dataset show that the PSNR of our algorithm is 0.11dB,0.15dB,and 0.05dB higher than that of the HSENet algorithm at 2x,3x,and 4x scales,respectively;In terms of SSIM metrics,our algorithm outperforms the HSENet algorithm by 0.0058 and 0.0013 at 3x and 4x scales,respectively.

关键词

遥感图像/自相似/超分辨率/卷积神经网络

Key words

Remote Sensing Images/Self-Similarity/Super-Resolution/Convolutional Neural Networks

分类

信息技术与安全科学

引用本文复制引用

何松,唐程华,陈俊宽,谢唯嘉..多尺度自相似遥感图像超分辨率重建网络设计[J].福建电脑,2024,40(1):33-38,6.

基金项目

本文得到江西省研究生创新专项(No.YC2022-S640)资助. (No.YC2022-S640)

福建电脑

1673-2782

访问量0
|
下载量0
段落导航相关论文