| 注册
首页|期刊导航|福建电脑|脑电信号的稳定扩散样本增强方法

脑电信号的稳定扩散样本增强方法

蔡子堃 罗天健

福建电脑2024,Vol.40Issue(1):39-43,5.
福建电脑2024,Vol.40Issue(1):39-43,5.DOI:10.16707/j.cnki.fjpc.2024.01.007

脑电信号的稳定扩散样本增强方法

EEG Sample Enhancement Method based on Stable Diffusion Model

蔡子堃 1罗天健1

作者信息

  • 1. 福建师范大学计算机与网络空间安全学院 福州 350117
  • 折叠

摘要

Abstract

In response to the classification performance bottleneck caused by the scarcity of EEG signal samples,this paper proposes a stable diffusion model sample enhancement method for EEG.By converting EEG samples into time-frequency maps and using effective cue words to fine tune the image stabilization diffusion model,the EEG sample set is expanded to improve classification and recognition accuracy.The experimental results show that the classification accuracy of the sample set enhanced by the stable diffusion model has been improved from 72.94%to 76.80%,indicating that the proposed method effectively overcomes the classification performance bottleneck and provides a new approach for small sample EEG sample analysis.

关键词

脑电信号/样本分类/稳定扩散模型/模式识别

Key words

EEG Signal/Sample Classification/Stable Diffusion Model/Pattern Recognition

分类

信息技术与安全科学

引用本文复制引用

蔡子堃,罗天健..脑电信号的稳定扩散样本增强方法[J].福建电脑,2024,40(1):39-43,5.

基金项目

本文得到福建省自然科学基金面上项目(No.2022J01655)资助. (No.2022J01655)

福建电脑

1673-2782

访问量0
|
下载量0
段落导航相关论文