| 注册
首页|期刊导航|国防科技大学学报|面向众核处理器的阴阳K-means算法优化

面向众核处理器的阴阳K-means算法优化

周天阳 王庆林 李荣春 梅松竹 尹尚飞 郝若晨 刘杰

国防科技大学学报2024,Vol.46Issue(1):93-102,10.
国防科技大学学报2024,Vol.46Issue(1):93-102,10.DOI:10.11887/j.cn.202401010

面向众核处理器的阴阳K-means算法优化

Optimizing Yinyang K-means algorithm on many-core CPUs

周天阳 1王庆林 1李荣春 1梅松竹 1尹尚飞 1郝若晨 1刘杰1

作者信息

  • 1. 国防科技大学 计算机学院,湖南 长沙 410073||国防科技大学 并行与分布计算全国重点实验室,湖南 长沙 410073
  • 折叠

摘要

Abstract

Traditional Yinyang K-means algorithm is computationally expensive when dealing with large-scale clustering problems.An efficient parallel acceleration implementation of Yinyang K-means algorithm was proposed on the basis of the architectural characteristics of typical many-core CPUs.This implementation was based on a new memory data layout,used vector units in many-core CPUs to accelerate distance calculation in Yinyang K-means,and targeted memory access optimization for NUMA(non-uniform memory access)characteristics.Compared with the open source multi-threaded version of Yinyang K-means algorithm,this implementation can achieve the speedup of up to5.6 and8.7 approximately on ARMv8 and x86 many-core CPUs,respectively.Experiments show that the optimization successfully accelerate Yinyang K-means algorithm in many-core CPUs.

关键词

K-means/非一致内存访问/向量化/众核处理器/性能优化

Key words

K-means/NUMA/vectorization/many-core CPU/performance optimization

分类

计算机与自动化

引用本文复制引用

周天阳,王庆林,李荣春,梅松竹,尹尚飞,郝若晨,刘杰..面向众核处理器的阴阳K-means算法优化[J].国防科技大学学报,2024,46(1):93-102,10.

基金项目

国家自然科学基金资助项目(62002365) (62002365)

国防科技大学学报

OACSTPCD

1001-2486

访问量0
|
下载量0
段落导航相关论文