| 注册
首页|期刊导航|化工学报|图神经网络预测烃类工质的热力学性质

图神经网络预测烃类工质的热力学性质

洪小东 董轩 林美金 廖祖维 任聪静 杨遥 蒋斌波 王靖岱 阳永荣

化工学报2023,Vol.74Issue(11):4466-4474,9.
化工学报2023,Vol.74Issue(11):4466-4474,9.DOI:10.11949/0438-1157.20230942

图神经网络预测烃类工质的热力学性质

Prediction of thermodynamic properties of hydrocarbon working fluids by graph neural network models

洪小东 1董轩 2林美金 2廖祖维 2任聪静 3杨遥 2蒋斌波 2王靖岱 2阳永荣2

作者信息

  • 1. 浙江大学杭州国际科创中心,化工功能材料智能设计与制造浙江省工程研究中心,浙江 杭州 311215
  • 2. 浙江大学化学工程联合国家重点实验室,浙江 杭州 310027
  • 3. 浙江大学宁波科创中心,浙江 宁波 315100
  • 折叠

摘要

Abstract

Organic Rankine cycle(ORC)has attracted much attention due to its ability to convert low-grade heat to electricity.One of the important tasks to promote the application of ORC is to find efficient and environmentally friendly working fluids to replace high-GWP(global warming potential)hydrochlorofluorocarbon(HCFC)and hydrofluorocarbon(HFC).In this article,a prediction model for the thermodynamic properties of ORC hydrocarbon working fluids based on graph neural networks(GNN)is constructed.GNN is used to learn the characteristics of molecular structure,and the combination of molecular structure characteristics and temperature is used to build a prediction model of molecular structure and properties using multilayer perceptron(MLP).The model is based on a training set of 2508 linear,cyclic,and aromatic hydrocarbons with carbon chain lengths ranging from 2 to 10.The obtained model achieves better prediction results than previous literature on predicting critical temperature,evaporation enthalpy and gas-phase and liquid-phase molar heat capacity.In addition,the resulting model was applied to predict the thermodynamic properties of over 430000 hydrofluoroolefins.

关键词

热力学性质/预测/神经网络/ORC工质/氢氟烯烃

Key words

thermodynamic properties/prediction/neural network/ORC working fluids/hydrofluoroolefin

分类

化学化工

引用本文复制引用

洪小东,董轩,林美金,廖祖维,任聪静,杨遥,蒋斌波,王靖岱,阳永荣..图神经网络预测烃类工质的热力学性质[J].化工学报,2023,74(11):4466-4474,9.

基金项目

国家自然科学基金项目(U22A20415) (U22A20415)

浙江省尖兵领雁计划项目(2022C01SA442617) (2022C01SA442617)

化工学报

OA北大核心CSCDCSTPCD

0438-1157

访问量11
|
下载量0
段落导航相关论文