| 注册
首页|期刊导航|化工学报|基于时序迁移与双流加权的ONLSTM软测量建模

基于时序迁移与双流加权的ONLSTM软测量建模

李祥宇 隋璘 马君霞 熊伟丽

化工学报2023,Vol.74Issue(11):4622-4633,12.
化工学报2023,Vol.74Issue(11):4622-4633,12.DOI:10.11949/0438-1157.20230893

基于时序迁移与双流加权的ONLSTM软测量建模

ONLSTM soft sensor modeling based on time series transfer and dual stream weighting

李祥宇 1隋璘 1马君霞 2熊伟丽2

作者信息

  • 1. 江南大学物联网工程学院,江苏 无锡 214122
  • 2. 江南大学物联网工程学院,江苏 无锡 214122||江南大学轻工过程先进控制教育部重点实验室,江苏 无锡 214122
  • 折叠

摘要

Abstract

The modeling of actual chemical processes has characteristics such as multi-variability,nonlinearity,and dynamism,which can lead to increased model complexity and the generation of redundant information and temporal distribution shift when extracting features.Therefore,an ordered neurons long short-term memory network(ONLSTM)model based on time series transfer and dual stream weighting is proposed.First,temporal transfer is used to match feature distributions to adaptively represent feature distribution information and training is performed by dividing the time domain with the largest difference in feature distribution to reduce timing distribution mismatch,thereby solving the problem of timing distribution drift.Secondly,a dual stream weighted ONLSTM model is embedded within the time series transfer framework,and the ONLSTM main forgetting gate and main input gate are weighted separately to more accurately control the transmission of information.Further combining the dual flow structure to design the corresponding gating unit for dual information flow control,reducing the coupling effect during parameter adjustment,reducing model complexity,and improving its predictive performance.Finally,the proposed model was applied to soft sensing modeling of SO2 concentration in the sulfur recovery process and the flue gas emissions from a certain thermal power plant desulfurization process,and compared with other deep learning networks to verify the effectiveness of the model.

关键词

时间序列迁移/加权有序神经元长短时记忆网络/双流结构/软测量/神经网络/过程控制/动态建模

Key words

time series transfer/weighted ordered neurons long short-term memory/dual stream/soft sensor/neural networks/process control/dynamic modeling

分类

信息技术与安全科学

引用本文复制引用

李祥宇,隋璘,马君霞,熊伟丽..基于时序迁移与双流加权的ONLSTM软测量建模[J].化工学报,2023,74(11):4622-4633,12.

基金项目

国家自然科学基金项目(61773182) (61773182)

国家重点研发计划子课题项目(2018YFC1603705-03) (2018YFC1603705-03)

江南大学双一流学科与支撑学科协同发展支持计划项目(QGJC20230203) (QGJC20230203)

化工学报

OA北大核心CSCDCSTPCD

0438-1157

访问量0
|
下载量0
段落导航相关论文