| 注册
首页|期刊导航|计算机应用研究|区块链赋能多边缘安全联邦学习模型

区块链赋能多边缘安全联邦学习模型

姜晓宇 顾瑞春 张欢

计算机应用研究2024,Vol.41Issue(1):26-31,6.
计算机应用研究2024,Vol.41Issue(1):26-31,6.DOI:10.19734/j.issn.1001-3695.2023.05.0208

区块链赋能多边缘安全联邦学习模型

Blockchain-empowered multiple edge secure federated learning model

姜晓宇 1顾瑞春 1张欢1

作者信息

  • 1. 内蒙古科技大学信息工程学院,内蒙古包头 014010
  • 折叠

摘要

Abstract

Federated learning is a revolutionary deep learning model,and it enables users to train the global model coopera-tively without exposing their private data.However,malicious behaviors of some clients can lead to the risk of single point of failure and privacy disclosure,which pose a serious threat to the security of federated learning.In response to the above is-sues,based on the existing research,this paper proposed a blockchain empowered multi edge federated learning model.First-ly,this paper proposed to use blockchain instead of central server to enhance the stability and reliability of model training process.Secondly,this paper proposed a consensus mechanism based on edge computing to achieve a more efficient consensus process.In addition,incorporating reputation assessment into the federated learning training process,it could transparently measure the contribution value of each participant and standardize the behavior of work nodes.Finally,comparative experi-ments show that the scheme can maintain high accuracy in the malicious environment,and can resist higher malicious ratio compared with the traditional federated learning algorithms.

关键词

人工智能/联邦学习/区块链/边缘计算/共识机制

Key words

artificial intelligence/federated learning/blockchain/edge computing/consensus mechanism

分类

信息技术与安全科学

引用本文复制引用

姜晓宇,顾瑞春,张欢..区块链赋能多边缘安全联邦学习模型[J].计算机应用研究,2024,41(1):26-31,6.

基金项目

内蒙古自然科学基金资助项目(2021LHMS06003) (2021LHMS06003)

内蒙古高校基本科研业务费资助项目(114) (114)

计算机应用研究

OA北大核心CSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文