HHUIM:一种新的启发式高效用项集挖掘方法OACSTPCD
HHUIM:new heuristic high utility itemset mining method
针对基于启发式的高效用项集挖掘算法在挖掘过程中可能丢失大量项集的问题,提出一种新的启发式高效用项集挖掘算法HHUIM.HHUIM利用哈里斯鹰优化算法进行种群更新,能够有效减少项集丢失.提出并设计了鹰的替换策略,解决了搜索空间较大的问题,降低了适应度函数值低于最小效用阈值的鹰的数量.此外,提出存储回溯策略,可有效防止算法因收敛过快陷入局部最优.大量的实验表明,所提算法优于目前最先进的启发式高效用项集挖掘算法.
In response to the problem of potentially losing a large number of itemsets during the mining process of heuristic-based high utility itemset mining algorithms,this paper proposed a new heuristic-based high utility itemset mining algorithm,called HHUIM.HHUIM utilized the Harris hawk optimization algorithm for population update,effectively reducing the loss of itemsets.This paper also introduced and designed a hawk replacement strategy to solve the problem of a large search space by decreasing the number of hawks with fitness values below the minimum utility threshold.Furthermore,this paper proposed a storage backtracking strategy to prevent premature convergence to local optima.Extensive experiments demonstrate that the proposed algorithm outperforms the state-of-the-art heuristic-based high utility itemset mining algorithms.
高智慧;韩萌;李昂;刘淑娟;穆栋梁
北方民族大学计算机科学与工程学院,银川 750021
计算机与自动化
哈里斯鹰优化算法高效用项集挖掘启发式算法智能优化算法
Harris eagle optimization algorithmhigh utility itemset miningheuristicsintelligent optimization algorithms
《计算机应用研究》 2024 (001)
94-101 / 8
国家自然科学基金资助项目(62062004);宁夏自然科学基金资助项目(2023AAC03315);北方民族大学研究生创新项目(YCX23149)
评论