| 注册
首页|期刊导航|空军工程大学学报|基于注意力机制的CNN-LSTM模型的航迹预测

基于注意力机制的CNN-LSTM模型的航迹预测

王堃 周志崇 曲凯 曹明松 胡延达

空军工程大学学报2023,Vol.24Issue(6):50-57,8.
空军工程大学学报2023,Vol.24Issue(6):50-57,8.DOI:10.3969/j.issn.2097-1915.2023.06.007

基于注意力机制的CNN-LSTM模型的航迹预测

Real-Time Track Prediction of CNN-LSTM Model Based on Attention Mechanism

王堃 1周志崇 2曲凯 2曹明松 2胡延达3

作者信息

  • 1. 93886部队,乌鲁木齐,830001
  • 2. 空军工程大学空管领航学院,西安,710051
  • 3. 陕西师范大学计算机科学学院,西安,710119
  • 折叠

摘要

Abstract

Aimed at the problems that traditional trajectory prediction methods based on mathematical or statistical models have a certain of inherent limitations and are difficult to meet increasingly the demands of efficiency,accuracy,and real-time trajectory prediction in the modern aviation field,a novel real-time traj-ectory prediction method is proposed based on a CNN-LSTM model with an attention mechanism.The proposed model is that multidimensional features are extracted from trajectory data by one-dimensional convolution,reducing the number of input features.Taking the resulting multidimensional time-series da-ta as an input of LSTM,the contextual information can be extracted by LSTM.Moreover,an attention mechanism is employed to assign weights to output from different time-series nodes within the LSTM,fo-cusing on key trajectory information.The experimental validation shows that the proposed model in com-parison with the LSTM model and the CNN-LSTM model,produces trajectory predictions to be even more close to match real trajectories.Specifically,the model in this paper achieves a 29.7%reduction in average prediction error compared to the LSTM model and a 25.4%reduction compared to the CNN-LSTM mod-el.In summary,the proposed method significantly enhances the accuracy of trajectory prediction.

关键词

航迹预测/注意力机制/卷积神经网络/循环神经网络

Key words

flight trajectory prediction/attention mechanism/convolutional neural network/recurrent neural network

分类

信息技术与安全科学

引用本文复制引用

王堃,周志崇,曲凯,曹明松,胡延达..基于注意力机制的CNN-LSTM模型的航迹预测[J].空军工程大学学报,2023,24(6):50-57,8.

空军工程大学学报

OA北大核心CSCDCSTPCD

2097-1915

访问量3
|
下载量0
段落导航相关论文