| 注册
首页|期刊导航|煤矿安全|矿区沉陷DEM多重滤波方法研究

矿区沉陷DEM多重滤波方法研究

姚顽强 蒙延斌 郑俊良 薛志强

煤矿安全2024,Vol.55Issue(1):167-175,9.
煤矿安全2024,Vol.55Issue(1):167-175,9.DOI:10.13347/j.cnki.mkaq.20221973

矿区沉陷DEM多重滤波方法研究

Research on DEM multiple filtering method for mining subsidence

姚顽强 1蒙延斌 1郑俊良 1薛志强2

作者信息

  • 1. 西安科技大学 测绘科学与技术学院,陕西 西安 710054
  • 2. 陕西彬长孟村矿业有限公司,陕西 咸阳 713602
  • 折叠

摘要

Abstract

Aiming at the problems of long cycle time and large workload of traditional surface movement monitoring methods,the method of acquiring ground point clouds and constructing subsidence DEM through UAV LiDAR and point cloud filtering enables surface subsidence monitoring fast and efficient.Because of the subsidence DEM models constructed by existing point cloud filter-ing and interpolation algorithms still cover noise,which limits the popularity of this technology in mining areas,therefore,it is signi-ficant to further study the removal method of subsidence DEM noise,compare and analyze the multiple filtering and classical filter-ing techniques.Experimental analysis results show that the median filter combined with Wiener filter has the best denoising effect among several denoising methods,which can keep the details of the subsidence basin and meet the basic requirements of surface de-formation monitoring in mining areas.

关键词

无人机LiDAR/地表沉陷/点云滤波/沉陷DEM/多重滤波

Key words

unmanned aerial vehicle LiDAR/surface subsidence/point cloud filtering/subsidence DEM/multi-filtering

分类

矿业与冶金

引用本文复制引用

姚顽强,蒙延斌,郑俊良,薛志强..矿区沉陷DEM多重滤波方法研究[J].煤矿安全,2024,55(1):167-175,9.

基金项目

国家自然科学基金资助项目(42201484) (42201484)

煤矿安全

OA北大核心CSTPCD

1003-496X

访问量0
|
下载量0
段落导航相关论文