|国家科技期刊平台
首页|期刊导航|煤气与热力|mRMR和PSO算法对神经网络预测模型优化效果

mRMR和PSO算法对神经网络预测模型优化效果OA

Optimization Effect of mRMR and PSO Algorithms on Neural Network Prediction Models

中文摘要英文摘要

提出利用最大相关和最小冗余(mRMR)算法、粒子群优化(PSO)算法,对BP神经网络预测模型进行优化.对某住宅楼进行供热负荷预测,评价3种神经网络预测模型(BP神经网络预测模型、mRMR-BP神经网络预测模型、PSO-mRMR-BP神经网络预测模型)的预测效果.在3种神经网络预测模型中,BP神经网络预测模型的预测效果最差,PSO-mRMR-BP神经网络预测模型的预测效果最佳.与BP神经网络预测模型相比,经过mRMR算法对输入变量进行筛选以及PSO算法对初始参数进行优化,PSO-mRMR-BP神经网络预测模型的预测效果显著提高.

It is proposed to use the maximum relevance minimum redundancy(mRMR)algorithm and the particle swarm optimization(PSO)algorithm to optimize the BP neural network prediction model.The heating load of a residential building is predicted,and the prediction effects of three neural network prediction models(BP neural network prediction model,mRMR-BP neural network prediction model,and PSO-mRMR-BP neural network prediction model)are evaluated.Among the three neural network prediction models,the BP neural network prediction model has the worst prediction effect,and the PSO-mRMR-BP neural network prediction model has the best prediction effect.Compared with the BP neural network prediction model,through the mRMR algorithm to screen input variables and the PSO algorithm to opti-mize the initial parameters,the prediction effect of the PSO-mRMR-BP neural network prediction model is sig-nificantly improved.

杜润琪;于丹;刘益民;岑悦

北京建筑大学,北京 102627中国建筑科学研究院有限公司,北京 100013

计算机与自动化

供热负荷预测BP神经网络mRMR算法PSO算法

heating loadpredictionBP neural networkmRMR algorithmPSO algorithm

《煤气与热力》 2024 (001)

6-9,34 / 5

评论