LNG管道非满液预冷过程应力和变形模拟OA
Stress and Deformation Simulation of LNG Pipeline during Non-full Liquid Pre-cooling Process
为探究LNG管道液位相对高度对管道应力和变形的影响,针对某段水平液化天然气管道液体预冷过程,建立了 LNG管道温度场和结构场耦合数值计算模型,利用ANSYS软件分析非满液状态下不同液位相对高度对管道温度、应力和变形分布的影响.模拟结果表明,液位相对高度直接影响管道整体温度场分布,液位相对高度越高,管道下表面面积越大,上表面面积越小.管道上下表面平均温度最大温差随液位相对高度升高呈现先增大后减小的趋势,液位相对高度40%时管道上下表面平均温度最大温差为45.79℃,最大局部温差达66.06 ℃,局部温差变化趋势与平均温度最大温差相同.不同液位相对高度下最大应力峰值出现在液位相对高度60%时,为305.19 MPa,应力峰值均出现在管道两端内壁底部.随液位相对高度升高,应力峰值先迅速增大而后缓慢减小.随液位相对高度增加,管道不同位置处径向变形量均先增加后减小.最大径向变形量出现在液位相对高度40%时,最大径向变形量为68.753 mm.最大总变形量随液位相对高度变化曲线与管道上下表面平均温度最大温差随液位相对高度曲线趋势相似.液位相对高度10%与90%工况的管道上下表面平均温度最大温差十分接近,液位相对高度20%与70%工况、液位相对高度30%与60%工况亦然.不同液位相对高度下LNG对管道所施加的温度载荷具有相似性,温度载荷是影响管道变形的主要原因.建议LNG管道预冷时进一步减小管道液位相对高度,适当延长预冷时间,以减小应力荷载带来的管道变形.
In order to investigate the influence of liquid level relative heights on the stress and deform-ation of LNG pipeline,a coupled numerical calculation model of temperature field and structural field was es-tablished for the liquid pre-cooling process of a certain horizontal LNG pipeline.ANSYS software is used to analyze the influence of different liquid level relative heights on pipeline temperature,stress and deformation distribution under non-full liquid conditions.The simu-lation results show that the relative height of the liquid level directly affects the overall temperature distribution of the pipeline.The higher the relative height of the liquid level,the larger the lower surface area of the pipeline,and the smaller the upper surface area.The maximum average temperature difference between the upper and lower surfaces of the pipeline shows a trend of first increasing and then decreasing as the relative height of the liquid level increases.When the relative height of the liquid level is 40%,the maximum average temperature difference between the upper and lower surfaces of the pipeline is 45.79 ℃,and the maximum local temperature difference is 66.06 ℃.The trend of local temperature difference change is the same as the maximum average temperature difference.The maxi-mum stress peak at different liquid level relative heights occurs at 60% of the liquid level relative height,which is 305.19 MPa.The stress peak occurs at the bottom of the inner wall at both ends of the pipe-line.As the relative height of the liquid level increa-ses,the peak stress first rapidly increases and then slowly decreases.As the relative height of the liquid level increases,the radial deformation at different posi-tions of the pipeline first increases and then decreases.The maximum radial deformation occurs at a relative height of 40% of the liquid level,with a maximum ra-dial deformation of 68.753 mm.The variation curve of the maximum total deformation with the relative height of the liquid level is similar to the trend of the maxi-mum average temperature difference between the upper and lower surfaces of the pipeline with the relative height of the liquid level.The maximum average tem-perature difference between the upper and lower sur-faces of the pipeline with relative liquid levels of 10%and 90% is very close,and the same applies to the working conditions with a relative liquid level of 20%and 70%,and a relative liquid level of 30% and 60%.The temperature load exerted by LNG on pipe-lines at different liquid level relative heights is similar,and the temperature load is the main reason affecting pipeline deformation.It is recommended to further re-duce the liquid level relative height of the pipeline dur-ing LNG pipeline pre-cooling,and appropriately extend the pre-cooling time to reduce pipeline deformation caused by stress loads.
许俊;陈灵;汪冬冬
合肥合燃华润燃气有限公司,安徽 合肥 230075安徽工业大学能源与环境学院,安徽马鞍山 243002
液位相对高度温度分布热应力变形
liquid level relative heighttemper-ature distributionthermal stressdeformation
《煤气与热力》 2024 (001)
后插19-后插25 / 7
安徽省自然科学基金面上项目(2208085ME139);安徽省省级教学质量工程项目(2020szsfkc0186);安徽省省级研究生专业学位教学案例库项目
评论