| 注册
首页|期刊导航|软件导刊|基于多分类器差异的噪声矫正域适应学习

基于多分类器差异的噪声矫正域适应学习

郑潍雯 汪云云

软件导刊2024,Vol.23Issue(1):42-49,8.
软件导刊2024,Vol.23Issue(1):42-49,8.DOI:10.11907/rjdk.231109

基于多分类器差异的噪声矫正域适应学习

Noise Correction Domain Adaptation Learning Based on Classifiers Discrepancy

郑潍雯 1汪云云2

作者信息

  • 1. 南京邮电大学 计算机学院、软件学院、网络空间安全学院
  • 2. 江苏省大数据安全与智能处理重点实验室,江苏 南京 210023
  • 折叠

摘要

Abstract

Unsupervised domain adaption(UDA)aims to transfer knowledge from the related and label-rich source domain to the label-scarce target domain.Usually,domain adaptation methods assume that the source data is correctly labeled.However,the labels and features of source samples will be destroyed due to the actual noise environment.To solve the problem of noisy source domain,this paper proposed noise correction domain adaptation based on classifiers discrepancy(NCDA).First,this method made a more precise classification standard by the difference between multiple classifiers in the network,which can divide noisy source samples into feature noise samples,label noise samples,and clean samples.Second,different correction methods were applied on them.Then,the corrected samples were put back into the training procedure.Finally,this paper used the idea of stochastic classifiers to improve the network.Extensive experiments on Office-31,Office-Home and Bing-Caltech demonstrated the effectiveness and robustness of NCDA,whose accuracy is 0.2%~1.6%higher than the sub-optimal method.

关键词

无监督域适应/噪声检测/噪声矫正/机器学习

Key words

unsupervised domain adaptation/noise detection/noise correction/machine learning

分类

信息技术与安全科学

引用本文复制引用

郑潍雯,汪云云..基于多分类器差异的噪声矫正域适应学习[J].软件导刊,2024,23(1):42-49,8.

基金项目

国家自然科学基金面上项目(61876091,61772284,62006126) (61876091,61772284,62006126)

软件导刊

1672-7800

访问量0
|
下载量0
段落导航相关论文