| 注册
首页|期刊导航|软件导刊|基于贝叶斯理论的HotellingT2小样本多元工序质量监控方法

基于贝叶斯理论的HotellingT2小样本多元工序质量监控方法

宁方华 骞文成 屠震元 陈智峰

软件导刊2024,Vol.23Issue(1):122-127,6.
软件导刊2024,Vol.23Issue(1):122-127,6.DOI:10.11907/rjdk.222482

基于贝叶斯理论的HotellingT2小样本多元工序质量监控方法

HotellingT2 Small Sample Multivariate Process Quality Monitoring Method Based on Bayesian Theory

宁方华 1骞文成 1屠震元 2陈智峰1

作者信息

  • 1. 浙江理工大学 机械工程学院,浙江 杭州 310018
  • 2. 杭州海康威视数字技术股份有限公司,浙江 杭州 310051
  • 折叠

摘要

Abstract

Traditional Hotelling T2 control chart method suitable for multivariate quality control has certain limitations in small batch process-ing due to its sensitivity to outliers due to limited sample data.To this end,Bayesian theory is combined with traditional Hotelling T2 control charts to estimate Bayesian parameters through historical batch process quality distribution information and existing real-time sample data.A Hotelling T2 process quality control chart based on Bayesian theory is constructed to resist the impact of outliers in the multivariate quality con-trol process of small batch processing.The analysis of quality control examples for engine camshaft processes shows that the proposed method can effectively resist the impact of outliers compared to traditional methods,has good anti-interference and stability,and can better monitor the uncontrolled state of process quality control.

关键词

多元质量控制/贝叶斯理论/HotellingT2控制图

Key words

multivariate quality control/Bayesian theory/HotellingT2 control chart

分类

计算机与自动化

引用本文复制引用

宁方华,骞文成,屠震元,陈智峰..基于贝叶斯理论的HotellingT2小样本多元工序质量监控方法[J].软件导刊,2024,23(1):122-127,6.

基金项目

国家自然科学基金项目(51475434) (51475434)

浙江省2023年度"尖兵""领雁"研发攻关计划项目(2022C01SA111123) (2022C01SA111123)

软件导刊

1672-7800

访问量0
|
下载量0
段落导航相关论文