| 注册
首页|期刊导航|山东电力技术|基于核主成分分析和食肉植物算法优化随机森林的风电功率短期预测

基于核主成分分析和食肉植物算法优化随机森林的风电功率短期预测

陈晓华 吴杰康 龙泳丞 王志平 蔡锦健

山东电力技术2024,Vol.51Issue(1):59-67,9.
山东电力技术2024,Vol.51Issue(1):59-67,9.DOI:10.20097/j.cnki.issn1007-9904.2024.01.007

基于核主成分分析和食肉植物算法优化随机森林的风电功率短期预测

Short-term Wind Power Prediction Based on Random Forest Optimized by Kernel Principal Component Analysis and Carnivorous Plant Algorithm

陈晓华 1吴杰康 2龙泳丞 2王志平 3蔡锦健2

作者信息

  • 1. 广东电网有限责任公司湛江供电局,广东 湛江 524005
  • 2. 广东工业大学自动化学院,广东 广州 510006
  • 3. 东莞理工学院电子工程与智能化学院,广东 东莞 523808
  • 折叠

摘要

Abstract

In order to improve the accuracy of short-term wind power prediction,a short-term wind power forecasting method based on kernel principal component analysis and carnivorous plant algorithm(CPA)optimized random forest(RF)was proposed.Firstly,8 meteorological factors related to wind power were extracted from 13 meteorological factors by kernel principal component analysis,and then these 8 meteorological factors were input into the prediction model.Then,the carnivorous plant algorithm was used to optimize the random forest,and to construct the CPA-RF prediction model,which can solve the problem that the prediction accuracy of the RF prediction model is not high enough.Finally,The actual wind power data was selected for testing.The test results indicate that 8 meteorological factors which are extracted through kernel principal component analysis method,is used as input.The effect is better than that of 13 meteorological factors directly inputted.The CPA-RF prediction model with higher prediction accuracy,significantly outperforms LSTM prediction model as well as other comparable models including BiLSTM and RF prediction model.This method can provide a reference for accuracy improvement of the short-term wind power prediction.

关键词

食肉植物算法/随机森林/风电功率预测/核主成分分析/多变量气象因素

Key words

carnivorous plant algorithm/random forest/wind power prediction/kernel principal component analysis/multivariate meteorological factors

分类

信息技术与安全科学

引用本文复制引用

陈晓华,吴杰康,龙泳丞,王志平,蔡锦健..基于核主成分分析和食肉植物算法优化随机森林的风电功率短期预测[J].山东电力技术,2024,51(1):59-67,9.

基金项目

国家自然科学基金项目(50767001).National Natural Science Foundation of China(50767001). (50767001)

山东电力技术

OACSTPCD

1007-9904

访问量0
|
下载量0
段落导航相关论文