基于CEEMDAN和小波包分解的闸门振动信号降噪研究OA
Research on noise reduction in gate vibration signals based on CEEMDAN and wavelet packet decomposition
针对闸门监测振动信号去噪问题,提出基于CEEMDAN(经验模态分解)和小波包分解的闸门振动信号降噪算法,通过采用CEEMDAN和小波包分解方法进行信号去噪,可以有效处理水电站泄洪闸门振动信号中受到的外部干扰.CEEMDAN方法能够将信号分解成多个本征模态函数(IMF),每个IMF代表不同频率的振动成分,使得外部干扰和真实信号成分可以分离.随后,小波包分解能够将每个IMF进一步分解成不同尺度和频率的子频带,这有助于更准确地定位和分离干扰成分.对每个子频带应用阈值去噪技术,可以有效去除噪声,保留真实信号.由测试结果可知,该算法能很好地剔除闸门振动信号中的无用噪声,有效提高闸门振动信号的准确性.
This paper proposes an algorithm to address noise denoising in vibration signals from gate monitoring.The proposed noise reduction algorithm combines the Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise(CEEMDAN)and wavelet packet decomposition to effectively eliminate external interference in vibration signals of sluice gates at hydropower plants.The CEEMDAN method is utilized to separate external disturbances from real signal components by decomposing the signals into several intrinsic mode functions(IMFs),each representing vibration components at different frequencies.The subsequent wavelet packet decomposition is applied to further decompose each IMF into sub-bands at varying scales and frequencies,enabling more accurate location and separation of interference components.Noise is then effectively removed from each sub-band by applying the threshold denoising technology,ensuring the generation of real signals.Experimental results showed the successful elimination of useless noise from gate vibration signals using this algorithm.The proposed algorithm offers an effective approach to improve the accuracy of gate vibration signals.
李初辉;孔令超;董懿;杨赛;黄天雄
中国长江电力股份有限公司,湖北 宜昌 443000
水利科学
闸门振动信号CEEMDAN小波包分解阈值降噪
gatevibration signalCEEMDANwavelet packet decomposition,threshold denoising
《水电站机电技术》 2024 (001)
16-18 / 3
中国长江三峡集团有限公司科研项目(Z522202011).
评论