长短时记忆网络与新安江模型耦合的降雨径流模拟性能OACSTPCD
Study on performance of rainfall-runoff simulations using coupled long short-term memory network and Xin'anjiang model
深度学习技术在降雨径流模拟方面具有广阔应用前景,但受训练样本限制,需与传统水文模型相耦合,由传统水文模型提供训练数据.耦合数据的选择和超参数方案对耦合模型的模拟性能影响显著,但尚未有专门的研究.本文以东湾流域为例,用双向长短时记忆网络耦合新安江模型不同模块数据,并用灰狼优化算法优化超参数,构建降雨径流模型.结果表明:模型耦合不同数据时,对日径流和场次洪水的模拟性能均有提高,尤以耦合产流量和模拟流量数据时最为明显.不同耦合数据需调整超参数方案,灰狼优化算法可满足需求.本研究为提高耦合模型径流模拟能力提供了新思路和新方法.
Deep learning techniques have a promising application in rainfall-runoff simulations,but they are limited by the availability of training samples and need coupling with a traditional hydrological model that can provide training data.Selection of coupled data and hyperparameters has a significant impact on the simulation performance of a coupled model,but it lacks deep study.In this paper,we present a rainfall-runoff simulation model by coupling different module data of the Xin'anjiang model with a bidirectional long short-term memory network and optimizing the hyperparameters using the Grey Wolf optimization algorithm,along with an application to the Dongwan watershed.The results show the model improves the simulations of daily runoffs and flood events when coupled with different data,especially runoff data and simulated flow data.The hyperparameter scheme needs to be adjusted to different coupled data,and the Grey Wolf optimization algorithm can meet such a demand.This study provides new ideas and methods for enhancing the runoff simulation capability of the coupled models.
季通焱;黄鹏年;李艳忠;王洁
南京信息工程大学 水文与水资源工程学院,南京 210044||水利部水文气象灾害机理与预警重点实验室,南京 210044
地球科学
双向长短时记忆网络模型新安江模型耦合模型灰狼优化算法径流模拟
bidirectional long and short-term memory network modelXin'anjiang modelcoupling modelgrey wolf optimization algorithmrunoff simulation
《水力发电学报》 2024 (001)
24-34 / 11
国家自然科学基金(41901036)
评论