首页|期刊导航|水力发电学报|融合EEMD-CNN的水电机组磨碰故障声纹识别模型

融合EEMD-CNN的水电机组磨碰故障声纹识别模型OACSTPCD

Voiceprint recognition model of hydropower unit rub-impact faults based on integrated EEMD-CNN

中文摘要英文摘要

水电机组声纹信号包含大量反映内部机械状态的有效信息,为了准确提取水电机组磨碰故障声纹特征,提出一种基于聚合经验模态分解(EEMD)与卷积神经网络(CNN)相结合的水电机组磨碰声纹识别模型.首先将水电机组噪声信号进行EEMD分解,得到若干本征模态分量(IMF)和残余分量(Res),然后将得到的IMF和Res与原噪声信号构建融合特征向量;以融合特征向量为输入,碰磨故障输出,正常和碰磨故障试验数据为样本,训练 CNN 深度学习神经网络,得到水电机组磨碰故障识别器,识别水电机组磨碰故障.结合水机电耦合平台和实际机组试验磨碰数据,验证了所提方法对水电机组碰磨故障识别效果,平均准确率达到 99.8%,且该方法识别效果显著优于其他几种识别模型.

Hydroelectric unit voice signals contain a significant amount of valuable information reflecting their internal mechanical state.To accurately extract the voiceprint features of rubbing faults in hydroelectric units,this paper presents a hydroelectric unit rubbing fault voiceprint recognition model based on the fusion of Ensemble Empirical Mode Decomposition(EEMD)and Convolutional Neural Network(CNN).First,we use EEMD to decompose a noise signal from a hydroelectric unit into several Intrinsic Mode Functions(IMFs)and a residue component(Res);we use these IMFs and Res,along with the original signal,to construct a fusion feature vector.Then,the vector is used as an input to train a CNN deep learning neural network,with the normal and rubbing fault test data as samples,so as to obtain a rubbing fault recognizer for hydroelectric units.This new method is validated against the rubbing test data from both the hydro-mechanical coupling test stand and the in-situ experiment,with an average accuracy of 99.8%,demonstrating its performance superior to other recognition models for the rubbing faults of hydroelectric units.

肖博屹;曾云;刀方;邹屹东;李想;拜树芳

昆明理工大学 冶金与能源工程学院,昆明 650093武汉大学 动力与机械学院,武汉 430072

能源与动力

水电机组声纹信号卷积神经网络EEMD故障诊断

hydroelectric unitvoice signalsconvolutional neural networkEEMDfault diagnosis

《水力发电学报》 2024 (001)

水电机组扩展运行及多机协同阻尼控制策略研究

59-69 / 11

国家自然科学基金(52079059;52269020)

10.11660/slfdxb.20240106

评论