| 注册
首页|期刊导航|水力发电学报|融合EEMD-CNN的水电机组磨碰故障声纹识别模型

融合EEMD-CNN的水电机组磨碰故障声纹识别模型

肖博屹 曾云 刀方 邹屹东 李想 拜树芳

水力发电学报2024,Vol.43Issue(1):59-69,11.
水力发电学报2024,Vol.43Issue(1):59-69,11.DOI:10.11660/slfdxb.20240106

融合EEMD-CNN的水电机组磨碰故障声纹识别模型

Voiceprint recognition model of hydropower unit rub-impact faults based on integrated EEMD-CNN

肖博屹 1曾云 1刀方 1邹屹东 2李想 1拜树芳1

作者信息

  • 1. 昆明理工大学 冶金与能源工程学院,昆明 650093
  • 2. 武汉大学 动力与机械学院,武汉 430072
  • 折叠

摘要

Abstract

Hydroelectric unit voice signals contain a significant amount of valuable information reflecting their internal mechanical state.To accurately extract the voiceprint features of rubbing faults in hydroelectric units,this paper presents a hydroelectric unit rubbing fault voiceprint recognition model based on the fusion of Ensemble Empirical Mode Decomposition(EEMD)and Convolutional Neural Network(CNN).First,we use EEMD to decompose a noise signal from a hydroelectric unit into several Intrinsic Mode Functions(IMFs)and a residue component(Res);we use these IMFs and Res,along with the original signal,to construct a fusion feature vector.Then,the vector is used as an input to train a CNN deep learning neural network,with the normal and rubbing fault test data as samples,so as to obtain a rubbing fault recognizer for hydroelectric units.This new method is validated against the rubbing test data from both the hydro-mechanical coupling test stand and the in-situ experiment,with an average accuracy of 99.8%,demonstrating its performance superior to other recognition models for the rubbing faults of hydroelectric units.

关键词

水电机组/声纹信号/卷积神经网络/EEMD/故障诊断

Key words

hydroelectric unit/voice signals/convolutional neural network/EEMD/fault diagnosis

分类

能源与动力

引用本文复制引用

肖博屹,曾云,刀方,邹屹东,李想,拜树芳..融合EEMD-CNN的水电机组磨碰故障声纹识别模型[J].水力发电学报,2024,43(1):59-69,11.

基金项目

国家自然科学基金(52079059 ()

52269020) ()

水力发电学报

OACSTPCD

1003-1243

访问量7
|
下载量0
段落导航相关论文