| 注册
首页|期刊导航|水力发电学报|SSA-XGBoost与时空特征选取的大坝变形预测模型

SSA-XGBoost与时空特征选取的大坝变形预测模型

张孟昕 陈波 刘伟琪 漆一宁 张明

水力发电学报2024,Vol.43Issue(1):84-98,15.
水力发电学报2024,Vol.43Issue(1):84-98,15.DOI:10.11660/slfdxb.20240108

SSA-XGBoost与时空特征选取的大坝变形预测模型

Dam deformation prediction model selected by SSA-XGBoost with temporal and spatial features

张孟昕 1陈波 1刘伟琪 1漆一宁 1张明2

作者信息

  • 1. 河海大学 水利水电学院,南京 210098||河海大学 水文水资源与水利工程科学国家重点实验室,南京 210098
  • 2. 江苏省泰州引江河管理处,江苏 泰州 225300
  • 折叠

摘要

Abstract

For dam deformation,some of the previous single-point models did not consider the spatial correlation of dam monitoring data and met difficulties in describing its overall response characteristics;The traditional regression models neglect the nonlinear relationship between the environmental and deformation quantities,resulting in poor prediction accuracy.To improve the prediction,this paper develops a predictive model based on an empirical modal decomposition of monitoring data by using an adaptive noise-complete set,or the technique of wavelet packet noise reduction.This model is combined with feature selection through an elastic network for the deformation factor under spatial correlation,considers the cross validation of the effectiveness of feature factors,and adopts the sparrow search algorithm extreme gradient to enhance computational efficiency.We examine the optimal factor set considering spatial correlation based on the deformation data measured at the Jinping arch dam.Comparison of the MSE and RMSE parameters of several models verifies the high accuracy and generalizability of our new method,which is useful for analysis of dam deformation patterns.

关键词

弹性网络/麻雀搜索算法/XGBoost/时空多因子/特征选取

Key words

elastic net/sparrow search algorithm/XGBoost/spatiotemporal multi-factor/feature selection

分类

水利科学

引用本文复制引用

张孟昕,陈波,刘伟琪,漆一宁,张明..SSA-XGBoost与时空特征选取的大坝变形预测模型[J].水力发电学报,2024,43(1):84-98,15.

基金项目

国家自然科基金面上项目(52079049) (52079049)

国家重点实验室基本科研业务费(522012272) (522012272)

水力发电学报

OACSTPCD

1003-1243

访问量0
|
下载量0
段落导航相关论文