| 注册
首页|期刊导航|水力发电学报|混凝土坝面作业场景智能识别ResNet50-SEMSF方法

混凝土坝面作业场景智能识别ResNet50-SEMSF方法

陈述 孙孟文 陈云 曹坤煜 李智 聂本武

水力发电学报2024,Vol.43Issue(1):99-108,10.
水力发电学报2024,Vol.43Issue(1):99-108,10.DOI:10.11660/slfdxb.20240109

混凝土坝面作业场景智能识别ResNet50-SEMSF方法

ResNet50-SEMSF method for intelligent identification of concrete dam surface operation scenes

陈述 1孙孟文 2陈云 1曹坤煜 3李智 4聂本武5

作者信息

  • 1. 水电工程施工与管理湖北省重点实验室(三峡大学),湖北 宜昌 443002||三峡大学 水利与环境学院,湖北 宜昌 443002
  • 2. 三峡大学 水利与环境学院,湖北 宜昌 443002
  • 3. 水电工程施工与管理湖北省重点实验室(三峡大学),湖北 宜昌 443002
  • 4. 中国长江三峡集团有限公司,武汉 430010
  • 5. 三峡大学 水利与环境学院,湖北 宜昌 443002||国家能源投资集团有限责任公司,成都 610000
  • 折叠

摘要

Abstract

To improve the identification efficiency of concrete dam surface operation scenes,a new intelligent identification method(ResNet50-SEMSF)for typical scenes is developed.The collected monitoring video of the construction scenes is segmented into images,and their features-such as workers,machines,materials,environment,and other entity elements-are examined to define the typical scenes on a dam surface.With Residual Network 50 as the backbone network structure,a squeeze excitation attention mechanism is adopted to enhance the capability of expressing the key features of multi-target entity elements in the operation images.The down-sampling multi-scale features of an operation image are fused so as to retain its low-level features and high-level semantic information,enhance the model's capability of understanding the features at different levels,and overcome the difficulties in scale change and target deformation.With comparative analysis of the test results by other three convolutional neural network models,the Grad Class Activation Mapping visualisation method is used to illustrate the extent to which our new model focuses on information about the entity elements in the scene categories.The results show its recognition effect is significantly better than that of ResNet50,MobileNetV2 and VGG16 classical network models,characterising its feasibility and usefulness for concrete dam face operation in intelligent scene recognition and safety management.

关键词

混凝土坝/坝面作业/深度学习/注意力机制/场景智能识别

Key words

concrete dam/dam surface operation/deep learning/attention mechanism/scene intelligent recognition

分类

水利科学

引用本文复制引用

陈述,孙孟文,陈云,曹坤煜,李智,聂本武..混凝土坝面作业场景智能识别ResNet50-SEMSF方法[J].水力发电学报,2024,43(1):99-108,10.

基金项目

国家自然科学基金(52209163 ()

52079073) ()

水力发电学报

OACSTPCD

1003-1243

访问量0
|
下载量0
段落导航相关论文