基于DREAM算法的DSGE模型参数估计精度研究OACHSSCDCSTPCD
Research on DREAM Algorithm-based Parameter Estimation Accuracy of DSGE Model
文章将人工智能算法中的DREAM算法首次应用到动态随机一般均衡模型的参数估计中,并以动态随机一般均衡模型LS(2005)为例对该算法的估计精度进行了系统分析,研究结果表明:根据待估参数随机抽样序列的箱线图来看,由DREAM算法产生的待估参数随机抽样序列的箱体长度均比RWMH和IMH算法产生的箱体长度要长,说明由DREAM算法产生的参数估计序列的分散程度比RWMH和IMH算法要大,表明了DREAM算法遍历参数空间范围更为广泛,算法逃逸局部最优值的能力更强.另外,从箱线图中的中位数数值来看,除了5个参数以外,由DREAM算法产生的参数估计序列的中位数相比RWMH和IMH算法,与真实数据生成过程更为接近,说明由DREAM算法产生的参数估计值大部分都集中在参数的真值附近.由于DREAM算法依据IQR统计方法除去无用链,故由DREAM算法产生的参数估计序列的异常值也明显降低,而RWMH算法产生的参数估计序列的异常值尤其多.从待估参数的90%最大后验密度可信区间来看,DREAM算法产生的待估参数90%最大后验密度可信区间除了3个参数以外,其余全部包含了真值,而传统的RWMH和IMH算法分别只有7个和1个区间包含了真值,表明DREAM算法的估计不确定性远小于传统的RWMH和IMH算法.最后,根据待估参数的无效因子来看,DREAM算法产生的待估参数序列与传统的RWMH和IMH算法相比,其相关性更弱,即无效因子数值更小,这一点进一步验证了DREAM算法遍历整个参数空间的能力更强.
This paper applies DREAM algorithm of artificial intelligence algorithm to the parameter estimation of dynamic stochastic general equilibrium model for the first time.Taking LS(2005)as an example,the paper systematically analyzes the esti-mation accuracy of this algorithm.The results go as below:According to the boxplot of random sampling sequence of parameters to be estimated,the box length of random sampling sequence of parameters to be estimated generated by DREAM algorithm is longer than that generated by RWMH and IMH algorithm,indicating that the dispersion degree of parameter estimation sequence gener-ated by DREAM algorithm is larger than that generated by RWMH and IMH algorithm.The results show that DREAM algorithm has a wider range of traversal and a stronger ability to escape from local optimal values.In addition,from the perspective of the median value in the boxplot,the median value of the parameter estimation sequence generated by DREAM algorithm is closer to the real data generation process than RWMH and IMH algorithms.Because DREAM algorithm removes useless chains according to IQR statistical method,the outliers of parameter estimation sequences generated by DREAM algorithm are also significantly re-duced,and the outliers of parameter estimation sequences generated by RWMH algorithm are particularly serious.Seen from the 90%maximum posterior density confidence interval of parameters to be estimated,the 90%maximum posterior density confidence interval of parameters to be estimated generated by DREAM algorithm contains truth values except for three parameters,while the traditional RWMH and IMH algorithms only have seven and one intervals containing truth values respectively,indicating that the estimation uncertainty of DREAM algorithm is much less than that of traditional RWMH and IMH algorithm.Finally,according to the invalid factor of the parameter to be estimated,the correlation between the sequence of parameters to be estimated generated by DREAM algorithm is weaker than the traditional RWMH and IMH algorithm,that is,the invalid factor value is smaller,which further verifies that DREAM algorithm has a stronger ability to traverse the whole parameter space.
罗琦;赵胜民
天津师范大学 经济学院,天津 300387南开大学 金融学院,天津 300071
经济学
DREAM算法DSGE模型估计精度
DREAM algorithmDSGE modelestimation accuracy
《统计与决策》 2024 (002)
46-51 / 6
评论