| 注册
首页|期刊导航|三峡大学学报(自然科学版)|基于CEEMDAN和相关性分析的大坝位移预测

基于CEEMDAN和相关性分析的大坝位移预测

傅露莹 齐慧君 李同春 姜鹏辉 杜效鹄

三峡大学学报(自然科学版)2024,Vol.46Issue(1):1-6,6.
三峡大学学报(自然科学版)2024,Vol.46Issue(1):1-6,6.DOI:10.13393/j.cnki.issn.1672-948X.2024.01.001

基于CEEMDAN和相关性分析的大坝位移预测

Dam Displacement Prediction Based on CEEMDAN and Correlation Analysis

傅露莹 1齐慧君 1李同春 1姜鹏辉 1杜效鹄2

作者信息

  • 1. 河海大学 水利水电学院,南京 210098
  • 2. 水电水利规划设计总院,北京 100120
  • 折叠

摘要

Abstract

The dam displacement data is influenced by various factors and has non-stationary nonlinear characteristics.To address the problem of low data prediction accuracy,a CEEMDAN-PCCs-TCN-XGBoost combined prediction model is proposed.Taking the monitoring data of a certain gravity dam as an example,firstly,the CEEMDAN algorithm is introduced to capture the trend and fluctuation information of non-stationary data,and the PCCs algorithm is combined to determine the main factors affecting data fluctuations.Secondly,in order to improve prediction accuracy,the traditional HST model is used for trend information prediction,and the main factors are used as input variables for fluctuation information prediction.Finally,the TCN model and XGBoost model are respectively applied to predict the data,and the prediction result is accumulated.The prediction results are compared with models such as EEMD-ARIMA and EEMD-LSTM-MLR.The results show that the CEEMDAN-PCCs-TCN-XGBoost combined prediction model is more accurate in predicting dam displacement data with frequent fluctuations.

关键词

混凝土大坝/变形预测/CEEMDAN/Pearson相关系数/时间卷积网络

Key words

concrete dam/displacement prediction/CEEMDAN/Pearson correlation coefficient/time convolution network

分类

建筑与水利

引用本文复制引用

傅露莹,齐慧君,李同春,姜鹏辉,杜效鹄..基于CEEMDAN和相关性分析的大坝位移预测[J].三峡大学学报(自然科学版),2024,46(1):1-6,6.

基金项目

国家重点研发计划(2022YFC3005403) (2022YFC3005403)

中国电建集团科技项目(DJ-ZDXM-2021-10) (DJ-ZDXM-2021-10)

三峡大学学报(自然科学版)

OA北大核心CSTPCD

1672-948X

访问量0
|
下载量0
段落导航相关论文