|国家科技期刊平台
首页|期刊导航|计算机技术与发展|基于传递式领域自适应的异构样本增强方法

基于传递式领域自适应的异构样本增强方法OACSTPCD

Heterogeneous Sample Enhancement Based on Transitive Domain Adaptation

中文摘要英文摘要

小样本问题广泛存在于数据驱动建模.领域自适应方法通过将源域中的样本知识迁移到目标域,从而实现目标域中的小样本增强,然而此类方法在实际应用中受限,原因在于难以应对领域分布差异较大的样本增强场景.针对上述问题,该文提出基于传递式领域自适应的异构样本增强方法.首先,提出传递式探索策略,通过私有特征和共享特征设计了面向异构域的领域分布探索策略,有效地缓解了负迁移,并为后续分布匹配提供支撑;然后,提出分布联合匹配机制,通过联合匹配异构领域的边缘分布和条件分布,并嵌入自适应机制,从而保证了异构域分布的匹配精度.该方法在业界公认的田纳西-伊斯曼数据集进行验证,实验结果表明该方法在异构域中的建模表现优于其他方法.

Small sample problem exists widely in data-driven modeling.Domain adaptation achieves small sample enhancement in target domain by transferring sample knowledge from source domain to target domain.However,those methods are limited in practical application because it is difficult to deal with sample enhancement scenarios with large domain distribution differences.To solve these problems,we propose a heterogeneous sample enhancement method based on transitive domain adaptation.Firstly,a transitive exploration strategy is proposed.A domain distribution exploration strategy for heterogeneous domains is designed based on specific and common features,which effectively alleviates negative transfer and provides support for subsequent distribution matching.Then,a distributed joint matching mechanism is proposed to match the marginal distribution and conditional distribution of heterogeneous domain,and embed an adaptive mechanism to ensure the matching accuracy of heterogeneous domain distribution.The proposed method is verified by the industry-recognized Tennessee-Eastman dataset,and the experimental results show that the proposed method performs better than other methods in heterogeneous domain modeling.

翟利志;任一夫;白洁;高学攀;贾庆超;刘强

中国电子科技集团公司第五十四研究所,河北 石家庄 050081||河北省智能化信息感知与处理重点实验室,河北 石家庄 050081中国电子科技集团公司第五十四研究所,河北 石家庄 050081陆装驻石家庄地区第一军代室,河北 石家庄 050081

计算机与自动化

域适应样本增强迁移学习小样本数据驱动建模

domain adaptationsample enhancementtransfer learningsmall sampledata-driven modeling

《计算机技术与发展》 2024 (001)

基于异构场的深海管道进化缺陷故障诊断方法研究

17-22 / 6

河北省智能化信息感知与处理重点实验室发展基金项目(SXX22138X002);国家自然科学基金(U21A20481,61973071)

10.3969/j.issn.1673-629X.2024.01.003

评论