| 注册
首页|期刊导航|计算机技术与发展|基于改进YOLOv4-tiny的节肢动物目标检测模型

基于改进YOLOv4-tiny的节肢动物目标检测模型

余咏 吴建平 何旭鑫 韦杰 高雪豪

计算机技术与发展2024,Vol.34Issue(1):114-120,7.
计算机技术与发展2024,Vol.34Issue(1):114-120,7.DOI:10.3969/j.issn.1673-629X.2024.01.017

基于改进YOLOv4-tiny的节肢动物目标检测模型

Arthropod Object Detection Model Based on Improved YOLOv4-tiny

余咏 1吴建平 2何旭鑫 1韦杰 1高雪豪1

作者信息

  • 1. 云南大学 信息学院,云南 昆明 650504
  • 2. 云南大学 信息学院,云南 昆明 650504||云南省电子计算中心,云南 昆明 650223
  • 折叠

摘要

Abstract

Aiming at the situation that the model detection efficiency is not high,and the bounding box prediction is wrong caused by the complex background,variety of morphology,occlusion target and diverse target scale of arthropods in the natural environment,an arthropod target detection model based on improved YOLOv4-tiny is proposed.Firstly,combining spatial and channel convolutional attention mechanism(CBAM),the background noise is suppressed.Secondly,deformable convolution(DCN)and an improved weighted bidirectional feature pyramid are introduced to reshape the convolution and feature fusion methods for multiscale prediction.Finally,a layer of Feat@3 is extracted in the FPN network,and a spatial pyramid pool structure is embedded to effectively extract various significant features of arthropods,so as to enhance the generalization ability of the model.The improved model is named YOLOv4-tiny-ATO.The experimental results show that the proposed model balances detection speed and accuracy well with a size of only54.6 Mb.The detection accuracy is 0.725,the detection speed reaches 89.6 frames per second,and the recall rate reaches 0.585,which is 0.426 higher than that of the YOLOv4-tiny model before the improvement.The model is more suitable for mobile deployment in terms of model size and detection speed,and the model detection accuracy can also meet the application standards to meet the detection needs of arthropods.

关键词

节肢动物/目标检测/可变形卷积/YOLOv4-tiny/双向特征金字塔

Key words

arthropods/object detection/deformable convolution/YOLOv4-tiny/bidirectional feature pyramid

分类

信息技术与安全科学

引用本文复制引用

余咏,吴建平,何旭鑫,韦杰,高雪豪..基于改进YOLOv4-tiny的节肢动物目标检测模型[J].计算机技术与发展,2024,34(1):114-120,7.

基金项目

国家自然科学基金项目(62172354) (62172354)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文