| 注册
首页|期刊导航|微型电脑应用|基于机器学习的迭代式数据均衡分区算法研究

基于机器学习的迭代式数据均衡分区算法研究

张镝 吴宇强

微型电脑应用2023,Vol.39Issue(12):12-15,4.
微型电脑应用2023,Vol.39Issue(12):12-15,4.

基于机器学习的迭代式数据均衡分区算法研究

Research on Iterative Data Balance Partitioning Algorithm Based on Machine Learning

张镝 1吴宇强2

作者信息

  • 1. 长春医学高等专科学校,思想政治理论教研部(公共学科),吉林,长春 130031
  • 2. 哈尔滨工业大学,计算学部,黑龙江,哈尔滨 150000
  • 折叠

摘要

Abstract

To achieve data balanced partitioning,a machine learning-based iterative data balanced partitioning algorithm is pro-posed.The central data warehousing technique is used to integrate the data and simultaneously perform data cleaning and re-duction.The kernel principal component analysis method is applied to extract features from the integrated data.Based on the feature extraction results,a decision tree algorithm in machine learning is employed to construct a classifier model.The itera-tive data balanced partitioning is achieved.The results indicate that the proposed algorithm achieves a data recall rate of over 90%and an average precision rate of over 85%,which is superior to traditional methods.

关键词

数据均衡分区/机器学习/迭代式/核主成分分析/决策树

Key words

data balanced partitioning/machine learning/iterative/kernel principal component analysis/decision tree

分类

信息技术与安全科学

引用本文复制引用

张镝,吴宇强..基于机器学习的迭代式数据均衡分区算法研究[J].微型电脑应用,2023,39(12):12-15,4.

基金项目

吉林省教育厅科学研究项目(JJKH20231542KJ) (JJKH20231542KJ)

微型电脑应用

OACSTPCD

1007-757X

访问量0
|
下载量0
段落导航相关论文