| 注册
首页|期刊导航|微型电脑应用|一种基于BLCNA模型的恶意URL检测技术

一种基于BLCNA模型的恶意URL检测技术

沈伍强 张金波 许明杰 杨春松

微型电脑应用2023,Vol.39Issue(12):62-65,4.
微型电脑应用2023,Vol.39Issue(12):62-65,4.

一种基于BLCNA模型的恶意URL检测技术

A Malicious URL Detection Technology Based on BLCNA Model

沈伍强 1张金波 1许明杰 2杨春松2

作者信息

  • 1. 广东电网有限责任公司信息中心,广东,广州 510000
  • 2. 国电南瑞科技股份有限公司,江苏,南京 210000
  • 折叠

摘要

Abstract

Aiming at the low accuracy and time-consuming of traditional methods for identifying malicious URLs,this paper proposes a combined neural network model(BLCNA)based on attention mechanism to detect malicious URLs.It extracts the semantic information and visual information of the URL for encoding processing.Combines the bidirectional long short-term memory network(BiLSTM)and the capsule network(CapsNet)to build a neural network joint model to capture semantic and visual features simultaneously.The attention mechanism is used to increase the key feature weights.The classification of the URL is completed based on the valid features.The experimental results show that the proposed method is superior to other methods in detecting malicious URLs,and the accuracy rate can reach 99.79%.

关键词

电力网络安全/URL/注意力机制/特征提取/神经网络

Key words

power network security/URL/attention mechanism/feature extraction/neural network

分类

信息技术与安全科学

引用本文复制引用

沈伍强,张金波,许明杰,杨春松..一种基于BLCNA模型的恶意URL检测技术[J].微型电脑应用,2023,39(12):62-65,4.

基金项目

南方电网公司科技项目资助(037800KK52190012) (037800KK52190012)

微型电脑应用

OACSTPCD

1007-757X

访问量0
|
下载量0
段落导航相关论文