| 注册
首页|期刊导航|西安理工大学学报|基于差分Causal LSTM模型的气象图像短时预测研究

基于差分Causal LSTM模型的气象图像短时预测研究

张晓晖 白文奇 杨松楠 王晓娟

西安理工大学学报2023,Vol.39Issue(4):529-535,7.
西安理工大学学报2023,Vol.39Issue(4):529-535,7.DOI:10.19322/j.cnki.issn.1006-4710.2023.04.009

基于差分Causal LSTM模型的气象图像短时预测研究

Research on short-time prediction of meteorological images based on differential-Causal LSTM Model

张晓晖 1白文奇 1杨松楠 1王晓娟1

作者信息

  • 1. 西安理工大学 自动化与信息工程学院,陕西西安 710048
  • 折叠

摘要

Abstract

Due to the low accuracy of meteorological image sequences'short-term prediction,we propose a differential-Causal LSTM model by using Causal LSTM with cascaded memory units,which is an introduction to the image gradient difference penalty term into the training process to improve the prediction model's ability to capture the dynamics and abrupt changes of short-time sequences.We first establish the meteorological image short-time prediction model by the recur-rent neural network and then analyze the prediction effect by the ConvLSTM model on weather radar echogram and satellite cloud sequences.The results show that the improved model in this paper can effectively reduce the blurring and improve the accuracy of prediction results.The dif-ferential-Causal LSTM model improves the critical success index(CSI)by 0.019 in the HKO-7 dataset,CSI also improved by 0.078 in the meteorological cloud image dataset,and the blurring is reduced.

关键词

ConvLSTM/Causal LSTM/端到端模型/图像梯度差分损失

Key words

ConvLSTM/Causal LSTM/end-to-end module/gradient difference loss

分类

天文与地球科学

引用本文复制引用

张晓晖,白文奇,杨松楠,王晓娟..基于差分Causal LSTM模型的气象图像短时预测研究[J].西安理工大学学报,2023,39(4):529-535,7.

基金项目

陕西省自然科学基础研究计划资助项目(2021JLM-58) (2021JLM-58)

西安理工大学学报

OA北大核心CSTPCD

1006-4710

访问量0
|
下载量0
段落导航相关论文