| 注册
首页|期刊导航|西安石油大学学报(自然科学版)|基于LSTM神经网络深度序列机械钻速实时预测

基于LSTM神经网络深度序列机械钻速实时预测

冯义 朱亮 杨立军 李慎越 席俊卿 陈芳 纪慧

西安石油大学学报(自然科学版)2024,Vol.39Issue(1):122-128,7.
西安石油大学学报(自然科学版)2024,Vol.39Issue(1):122-128,7.DOI:10.3969/j.issn.1673-064X.2024.01.015

基于LSTM神经网络深度序列机械钻速实时预测

Real-time Prediction of ROP Based on LSTM Neural Network Deep Sequence

冯义 1朱亮 2杨立军 1李慎越 1席俊卿 1陈芳 1纪慧2

作者信息

  • 1. 中石油吐哈油田分公司工程技术研究院,新疆哈密 839000
  • 2. 油气钻完井技术国家工程研究中心,湖北武汉 430100||油气钻采工程湖北省重点实验室(长江大学),湖北武汉 430100||长江大学石油工程学院,湖北武汉 430100
  • 折叠

摘要

Abstract

ROP is a key factor for optimizing drilling and shortening drilling cycles.Traditional ROP prediction mostly involves drilling analysis after drilling,with low prediction efficiency and accuracy,and limited applicability to geological formations.In order to efficient-ly predict high-precision ROP,a deep sequence ROP prediction method based on Long Short Term Memory(LSTM)neural network is proposed.Collect real-time drilling datasets,select 8 parameters including well depth,gamma rays,formation density,pore pressure,wellbore diameter,drilling time,drilling displacement,and drilling fluid density as characteristic parameters,and use Pearson correlation coefficient to measure the correlation between characteristic parameters.Build an LSTM neural network model,train the LSTM model and predict ROP,and analyze the prediction results.The performance of LSTM model,BP model,and SVM model is comparatively ana-lyzed by means of determination coefficient(R2),root mean square error(RMSE)and mean absolute percentage error(MAPE).The results show that the R2,RMSE and MAPE of LSTM model are 0.948、1.151 and 17.075.Compared to BP model and SVM model,the R2 of LSTM model is smaller and the RMSE and MAPE are larger,which shows better predictive performance of the LSTM model.This method helps drilling engineers and decision-makers to obtain drilling information in advance,thereby better planning drilling opera-tions,shortening drilling cycles,and providing a new way to predict drilling parameters.It can improve the efficiency and accuracy of previous prediction methods in dealing with complex geological problems.

关键词

机械钻速/LSTM神经网络/深度序列/实时预测/人工智能/深度学习

Key words

ROP/LSTM neural network/deep sequence/real-time prediction/artificial intelligence/deep learning

分类

能源科技

引用本文复制引用

冯义,朱亮,杨立军,李慎越,席俊卿,陈芳,纪慧..基于LSTM神经网络深度序列机械钻速实时预测[J].西安石油大学学报(自然科学版),2024,39(1):122-128,7.

基金项目

中国石油天然气股份有限公司前瞻性基础性技术攻关项目"致密气勘探开发技术研究"(2022DJ2107) (2022DJ2107)

西安石油大学学报(自然科学版)

OA北大核心CSTPCD

1673-064X

访问量0
|
下载量0
段落导航相关论文