| 注册
首页|期刊导航|地震工程学报|基于双层深度置信网络的梁桥结构损伤识别方法研究

基于双层深度置信网络的梁桥结构损伤识别方法研究

闫嵩 彭华春 杨汉青 何伟

地震工程学报2024,Vol.46Issue(1):66-73,104,9.
地震工程学报2024,Vol.46Issue(1):66-73,104,9.DOI:10.20000/j.1000-0844.20220407004

基于双层深度置信网络的梁桥结构损伤识别方法研究

Damage identification method of the beam bridge structures based on a double-layer deep belief network

闫嵩 1彭华春 2杨汉青 3何伟3

作者信息

  • 1. 中铁十六局集团有限公司,北京 100018
  • 2. 中铁第四勘察设计院集团有限公司,湖北武汉 430063
  • 3. 华北水利水电大学,河南郑州 450045
  • 折叠

摘要

Abstract

To accurately and efficiently identify structural damage in bridges,we propose a meth-od based on a double-layer deep belief network(DBN).This approach combines deep learning with structural dynamic characteristics of structural engineering.First,the initial three vertical vibration frequencies of the structure,along with the first three vertical vibration modal displace-ments of midspan nodes,are taken as parameters.These parameters serve as the input data for the first-layer DBN to identify the damage location of the structure.Following this,the differ-ences in the modal displacement of the first-order vertical vibration are taken as parameters.These are then used in the second-layer DBN to predict the extent of the structure damage.As a case study,we applied this method to the Zhengzhou-Xuchang suburban railway bridge.The calculation results show that when the error is not considered,the results of the structural dam-age identification method based on the double-layer DBN are precise.When the noise level does not exceed 10%,the accuracy of the location identification results is 100%.Even when the noise level does not exceed 15%,the maximum absolute error of quantitative identification results is not larger than-1.15%.Compared with the traditional BP neural network method,the proposed method demonstrates higher recognition accuracy and a stronger capability to resist noise.

关键词

DBN/损伤识别/抗噪性/固有频率

Key words

DBN/damage identification/anti-noise/natural frequency

分类

信息技术与安全科学

引用本文复制引用

闫嵩,彭华春,杨汉青,何伟..基于双层深度置信网络的梁桥结构损伤识别方法研究[J].地震工程学报,2024,46(1):66-73,104,9.

基金项目

河南省科技攻关计划项目(182102310890) (182102310890)

河南省高等学校重点科研项目计划项目(19A560014) (19A560014)

中铁十六局集团科技研发项目(K2020-7B) (K2020-7B)

铁四院科技研究开发项目(2020K161) (2020K161)

地震工程学报

OA北大核心CSTPCD

1000-0844

访问量0
|
下载量0
段落导航相关论文