| 注册
首页|期刊导航|西北林学院学报|基于GEE的洱海流域土地利用/覆被分类算法对比研究

基于GEE的洱海流域土地利用/覆被分类算法对比研究

董亚坤 王钰 何紫玲 王鹏 赵昊 曾维军

西北林学院学报2024,Vol.39Issue(1):28-35,8.
西北林学院学报2024,Vol.39Issue(1):28-35,8.DOI:10.3969/j.issn.1001-7461.2024.01.04

基于GEE的洱海流域土地利用/覆被分类算法对比研究

Comparison of Land Use/Cover Classification Algorithms in the Erhai Watershed Based on GEE

董亚坤 1王钰 1何紫玲 1王鹏 1赵昊 2曾维军1

作者信息

  • 1. 云南农业大学水利学院,云南昆明 650201||自然资源部云南山间盆地土地利用野外科学观测研究站,云南昆明 650201
  • 2. 云南农业大学资源与环境学院,云南昆明 650201||自然资源部云南山间盆地土地利用野外科学观测研究站,云南昆明 650201
  • 折叠

摘要

Abstract

In complex highland and mountainous areas,rapid and accurate long-term automatic land cover classification can serve as a foundation for land planning and resource utilization.In this paper,four spatial datasets,namely Landsat image surface reflectance,vegetation index,water body index,and DEM,were se-lected as the basis and supporting data for land cover classification by using the GEE platform.Three clas-sification algorithms,CART,RF,and SVM,were applied to automatically extract and compare the accuracy of land cover type information in the Erhai watershed.The results showed that 1)the classification accura-cy of RF was the highest,and the overall accuracy of SVM was the lowest among the three classification al-gorithms.RF was a optimal classification algorithm for LULC in the Erhai basin.2)The use of supporting data sets further improved the accuracy of the interpretation.The selection of sample points was the key in-fluence.3)Erhai_RF was capable of achieving higher accuracy.Meanwhile,the detailed features were more prominent.It will be more accurate in terms of local actual classification.This study can provide methodo-logical and technical support for intelligent and rapid extraction of long-time series land cover data products and screening of optimal classification algorithms in the Erhai watershed.

关键词

GEE/洱海流域/土地利用/覆被变化/分类算法/RF

Key words

GEE/Erhai watershed/land use/cover change/classification algorithm/RF

分类

林学

引用本文复制引用

董亚坤,王钰,何紫玲,王鹏,赵昊,曾维军..基于GEE的洱海流域土地利用/覆被分类算法对比研究[J].西北林学院学报,2024,39(1):28-35,8.

基金项目

国家自然科学基金地区项目(41961040) (41961040)

云南省农业联合专项面上项目(202101BD070001-101) (202101BD070001-101)

云南省中青年学术和技术带头人后备项目(2023HB). (2023HB)

西北林学院学报

OACSTPCD

1001-7461

访问量7
|
下载量0
段落导航相关论文