|国家科技期刊平台
首页|期刊导航|现代电子技术|低秩矩阵恢复下的自适应图像超分辨率重建

低秩矩阵恢复下的自适应图像超分辨率重建OACSTPCD

Adaptive image super-resolution reconstruction based on low rank matrix restoration

中文摘要英文摘要

低分辨率自适应图像的像素密度过于稀疏,导致图像清晰度达不到超分辨标准.为此提出低秩矩阵恢复下的自适应图像超分辨率重建方法.构建低秩矩阵恢复模型,计算峰值信噪比参数,完成低秩矩阵恢复下的自适应图像降噪处理.在图像区域中提取自适应特征,根据超分辨率判别条件定义具体的重建函数表达式,完成低秩矩阵恢复下自适应图像超分辨率重建方法的设计.实验结果表明,该方法的应用可使图像有效去噪,信噪比高于31 dB,重建后图像分辨率均值达到100 PPI,实现了超分辨重建.

The pixel density of low resolution adaptive images is too sparse,which results in image sharpness not meeting super-resolution standards.Therefore,an adaptive image super-resolution reconstruction method based on low rank matrix restoration is proposed.A low rank matrix restoration model is constructed,the peak signal-to-noise ratio(PSNR)parameters are calculated,and the adaptive image denoising processing based on low rank matrix restoration is completed.Adaptive features in the image region are extracted,and the specific reconstruction function expressions are defined based on super-resolution discrimination conditions,and then the design of adaptive image super-resolution reconstruction methods for low rank matrix recovery is completed.The experimental results show that the application of the proposed method can effectively denoise the image,with an SNR ratio higher than 31 dB and a mean image resolution of 100 PPI after reconstruction.Therefore,this method can achieve super-resolution reconstruction.

鹿宸铭

悉尼大学 电气与信息工程学院, 澳洲 悉尼 2006

电子信息工程

低秩矩阵恢复自适应图像超分辨率重建峰值信噪比图像降噪像素密度

low rank matrix restorationadaptive imagesuper-resolution reconstructionPSNRimage denoisingpixel density

《现代电子技术》 2024 (003)

34-38 / 5

10.16652/j.issn.1004-373x.2024.03.007

评论