|国家科技期刊平台
首页|期刊导航|现代电子技术|基于新闻文本图像的鲁棒水印算法

基于新闻文本图像的鲁棒水印算法OACSTPCD

Robust watermarking algorithm based on news text image

中文摘要英文摘要

在新闻文本图像中,现有的水印算法没有将表达文本部分的区域与其他背景区域进行区分,并且对二值水印图像嵌入时只在单通道嵌入导致鲁棒性不高.针对以上问题,提出基于新闻文本图像的鲁棒水印算法.首先将新闻文本图像进行大津阈值分割(OSTU),将文本与背景区域区分开,选择文本区域进行嵌入加深对重要信息的版权保护;接着将文本图像Cr和Cb通道的文本区域进行离散小波变换(DWT)后,利用主成分分析(PCA)进行能量集中并计算各主成分贡献率,通过比较贡献率来选择嵌入的主成分;最后对主成分及水印图像进行奇异值分解(SVD)完成水印嵌入.经过实验表明,嵌入水印图像在面对滤波等大多数常规攻击的NC值都在0.99以上,表明该算法有较强的鲁棒性,同时该算法在嵌入水印后图像的PSNR均值为45.66 dB,保证了不可感知性.

In news text images,the existing watermarking algorithms fail to distinguish the regions of expressing text from the other background regions.In addition,they only embed binary watermark images in a single channel,which results in low robustness.In view of this,a robust watermarking algorithm based on news text image is proposed.The news text image is segmented by Otsu threshold segmentation(OSTU)to distinguish the text from the background regions,and the text region is selected for embedding to deepen the copyright protection of important information.The text regions of the Cr and Cb channels of the text image are subjected to discrete wavelet transform(DWT),and principal component analysis(PCA)is used to concentrate energy and calculate the contribution rates of each principal component.The embedded principal components are selected by comparing the contribution rates.The singular value decomposition(SVD)is performed on the principal component and watermark image to complete watermark embedding.After experiments,the NC value of the embedded watermark image in the face of most conventional attacks such as filtering is above 0.99,which indicates that the algorithm has strong robustness.At the same time,the average PSNR of the image after embedding the watermark is 45.66 dB,which ensures imperceptibility.

刘尧;杜庆治;马迪南;龙华;邵玉斌;黄喜阳

昆明理工大学 信息工程与自动化学院, 云南 昆明 650500云南日报报业集团, 云南 昆明 650032昆明理工大学 信息工程与自动化学院, 云南 昆明 650500||云南省媒体融合重点实验室, 云南 昆明 650228

电子信息工程

图像水印大津阈值分割主成分分析小波变换奇异值分解NC值

image watermarkingOSTUPCAWTSVDNC value

《现代电子技术》 2024 (003)

43-50 / 8

云南省媒体融合重点实验室开放项目(320225403)

10.16652/j.issn.1004-373x.2024.03.009

评论