| 注册
首页|期刊导航|原子能科学技术|异构并行的高阶散射特征线方法及其在临界实验装置模拟中的应用

异构并行的高阶散射特征线方法及其在临界实验装置模拟中的应用

邹航 陈莹 张乾 曹巍 张晋超 梁亮 宋佩涛 刘杰

原子能科学技术2024,Vol.58Issue(1):135-143,9.
原子能科学技术2024,Vol.58Issue(1):135-143,9.DOI:10.7538/yzk.2023.youxian.0099

异构并行的高阶散射特征线方法及其在临界实验装置模拟中的应用

Heterogeneous Parallel High-order Scattering MOC and Its Application to Simulation of Critical Experiment

邹航 1陈莹 2张乾 3曹巍 3张晋超 4梁亮 5宋佩涛 6刘杰1

作者信息

  • 1. 国防科技大学并行与分布处理重点实验室,湖南长沙 410073||高端装备数字化软件湖南省重点实验室,湖南长沙 410073
  • 2. 中国原子能科学研究院,北京 102413
  • 3. 浙江大学物理学系浙江近代物理中心先进核能理论与应用实验室,浙江杭州 310030
  • 4. 哈尔滨工程大学核科学与技术学院核安全与仿真技术国防重点实验室,黑龙江哈尔滨 150001
  • 5. 西安核创能源科技有限公司,陕西西安 710077
  • 6. 中国辐射防护研究院,山西太原 030006
  • 折叠

摘要

Abstract

The purpose of this study is to investigate the impact of neutron anisotropic scattering on critical experimental setups and to develop a MOC(method of characteris-tic)program capable of handling anisotropic scattering,along with a high-performance heterogeneous parallel algorithm for high-order scattering transport calculations.In the initial stages,the physical calculations of the critical experimental setup were analyzed,revealing that neutron anisotropic scattering can significantly affect the calculation results,particularly when a thicker water reflector is present.Building upon the P1 anisotropic scattering MOC,a specialized MOC program was developed to address this issue.To validate the accuracy of the newly developed program for critical experimental simulations,the researchers selected the LCT011 critical experimental benchmark for neutronic calculations.A comprehensive comparison was performed between the results obtained from the MOC program and a Monte Carlo program,serving as a benchmark for verification.One notable challenge encountered during the study was the substantial increase in computation time and memory consumption caused by the presence of aniso-tropic sources.This created a significant memory burden,especially on heterogeneous systems.Consequently,the researchers conducted a thorough performance analysis of the high-order scattering transport solver employed in the program.The numerical results obtained from the study showcase that the MOC program achieves comparable accuracy to the Monte Carlo program under conditions involving high-order scattering computations.Furthermore,the researchers observed that the developed program exhibited remarkable computational efficiency,making it a promising alternative to the Monte Carlo method.By effectively addressing the impact of neutron anisotropic scat-tering and providing accurate results with enhanced computational efficiency,the devel-oped MOC program holds great potential for advancing critical experimental simula-tions.This research significantly contributes to the field of physical calculations by offering a reliable and efficient solution for handling anisotropic scattering in high-order transport calculations.In conclusion,this study presents the purposeful investigation of neutron anisotropic scattering in critical experimental setups,resulting in the develop-ment of a specialized MOC program and a high-performance heterogeneous parallel algorithm.The validation process,conducted using the LCT011 critical experimental benchmark,confirms the accuracy of the program.The performance analysis showcases the computational efficiency of the developed program,thus establishing its viability for critical experimental simulations involving anisotropic scattering effects.This research underscores the importance of accurate neutron anisotropic scattering calculations and offers an innovative solution to address the associated challenges in the field of reactor core physical calculations.

关键词

特征线方法/高阶散射/临界实验装置/异构并行

Key words

·method of characteristic/high-order scattering/critical experiment/hetero-genous parallel

分类

能源科技

引用本文复制引用

邹航,陈莹,张乾,曹巍,张晋超,梁亮,宋佩涛,刘杰..异构并行的高阶散射特征线方法及其在临界实验装置模拟中的应用[J].原子能科学技术,2024,58(1):135-143,9.

基金项目

中核集团"青年英才"项目 ()

国家自然科学基金(12105063) (12105063)

原子能科学技术

OA北大核心CSTPCD

1000-6931

访问量0
|
下载量0
段落导航相关论文