| 注册
首页|期刊导航|中国科学院大学学报|基于多层次深度模型的社交网络核心谣言传播节点识别

基于多层次深度模型的社交网络核心谣言传播节点识别

李元 张栖 朱建明 焦建彬

中国科学院大学学报2024,Vol.41Issue(1):136-144,9.
中国科学院大学学报2024,Vol.41Issue(1):136-144,9.DOI:10.7523/j.ucas.2022.057

基于多层次深度模型的社交网络核心谣言传播节点识别

Identification of core rumor spreaders in online social networks based on multi-stage deep model

李元 1张栖 1朱建明 2焦建彬2

作者信息

  • 1. 中国科学院大学电子电气与通信工程学院,北京 100049
  • 2. 中国科学院大学应急管理科学与工程学院,北京 100049
  • 折叠

摘要

Abstract

Online social networks have become the disaster areas where rumors grow.It is of great significance to identify core rumor spreaders for rumor prevention and control.The traditional rumor control model is mainly based on the dynamics of rumor propagation,and it is mainly focused on in-event or post-event control.In view of the timeliness of rumor control,this paper proposes a multi-stage graph convolutional network based on multi-dimensional features(MSF-GCN)deep learning model to accurately locate core rumor spreaders as early as possible and block rumor diffusion from the source.This work compares the MSF-GCN method with other three baseline methods on rumor data set,and the experimental results verify that our method is more efficient.

关键词

在线社交网络/谣言/识别核心节点/图卷积神经网络

Key words

online social network/rumor/identify core nodes/GCN

分类

信息技术与安全科学

引用本文复制引用

李元,张栖,朱建明,焦建彬..基于多层次深度模型的社交网络核心谣言传播节点识别[J].中国科学院大学学报,2024,41(1):136-144,9.

基金项目

国家自然科学基金(72074203)资助 (72074203)

中国科学院大学学报

OA北大核心CSTPCD

2095-6134

访问量0
|
下载量0
段落导航相关论文