| 注册
首页|期刊导航|钻井液与完井液|融合LightGBM和SHAP的井漏类型判断及主控因素分析

融合LightGBM和SHAP的井漏类型判断及主控因素分析

陈林 陆海瑛 王泽华 李城里 杨恒 张茂欣 徐同台

钻井液与完井液2023,Vol.40Issue(6):771-777,7.
钻井液与完井液2023,Vol.40Issue(6):771-777,7.DOI:10.12358/j.issn.1001-5620.2023.06.011

融合LightGBM和SHAP的井漏类型判断及主控因素分析

Identifying Types and Analyzing Main Controlling Factors of Mud Losses Using a Method Integrating LightGBM Algorithm and SHAP

陈林 1陆海瑛 1王泽华 1李城里 1杨恒 2张茂欣 3徐同台3

作者信息

  • 1. 中国石油塔里木油田分公司,新疆库尔勒 841000
  • 2. 北京石大胡杨石油科技发展有限公司,北京 102299||中国石油大学(北京)石油工程学院,北京 100100
  • 3. 北京石大胡杨石油科技发展有限公司,北京 102299
  • 折叠

摘要

Abstract

In the Kuche piedmont structure in the Tarim Basin where complex geological conditions prevail,frequent mud losses into the salt/gypsum formations and the target zones cause huge economic losses.To identity the types of the mud losses,a judgement model is established using the LightGBM algorithm.The LightGBM model,with good discriminative performance,has average recall rate of 85%,precision of 91%and F1-Score of 86.7%.In analyzing the types of mud losses,the interpretable machine learning techniques based on SHAP values are adopted to analyze a single mud loss event and all mud loss events as a whole.The SHAP value method,which is based on Cooperative Game Theory,breaks down the occurrence of mud loss events into contribution values of different features,and explains the effects of each feature on the mud loss event.Studies show that the main factors affecting mud losses include the difference between the mud density and the equivalent density calculated from the fracture pressure of the formation,the flow rate of mud,the well depth and the formation drilled.For the geology of the salt/gypsum formations and the target zones in the Kuche piedmont structure,the effects of the formation geology and the vertical distribution of the interlayer are in depth analyzed.This study enables the field engineers to fast and accurately determine the types of mud losses,and provides a strong support to the design of measures for preventing and controlling mud losses.

关键词

井漏/LightGBM/可解释性机器学习/主控因素/井漏类型

Key words

Mud loss/LightGBM/Interpretable machine learning/Main controlling factor/Type of mud loss

分类

能源科技

引用本文复制引用

陈林,陆海瑛,王泽华,李城里,杨恒,张茂欣,徐同台..融合LightGBM和SHAP的井漏类型判断及主控因素分析[J].钻井液与完井液,2023,40(6):771-777,7.

钻井液与完井液

OA北大核心CSTPCD

1001-5620

访问量0
|
下载量0
段落导航相关论文